Cooper-Knock Johnathan, Walsh Matthew J, Higginbottom Adrian, Robin Highley J, Dickman Mark J, Edbauer Dieter, Ince Paul G, Wharton Stephen B, Wilson Stuart A, Kirby Janine, Hautbergue Guillaume M, Shaw Pamela J
1 Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield S10 2HQ, UK.
2 Chemical and Biological Engineering, ChELSI Institute, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK.
Brain. 2014 Jul;137(Pt 7):2040-51. doi: 10.1093/brain/awu120. Epub 2014 May 27.
GGGGCC repeat expansions of C9orf72 represent the most common genetic variant of amyotrophic lateral sclerosis and frontotemporal degeneration, but the mechanism of pathogenesis is unclear. Recent reports have suggested that the transcribed repeat might form toxic RNA foci that sequester various RNA processing proteins. Consensus as to the identity of the binding partners is missing and whole neuronal proteome investigation is needed. Using RNA fluorescence in situ hybridization we first identified nuclear and cytoplasmic RNA foci in peripheral and central nervous system biosamples from patients with amyotrophic lateral sclerosis with a repeat expansion of C9orf72 (C9orf72+), but not from those patients without a repeat expansion of C9orf72 (C9orf72-) or control subjects. Moreover, in the cases examined, the distribution of foci-positive neurons correlated with the clinical phenotype (t-test P < 0.05). As expected, RNA foci are ablated by RNase treatment. Interestingly, we identified foci in fibroblasts from an asymptomatic C9orf72+ carrier. We next performed pulldown assays, with GGGGCC5, in conjunction with mass spectrometry analysis, to identify candidate binding partners of the GGGGCC repeat expansion. Proteins containing RNA recognition motifs and involved in splicing, messenger RNA nuclear export and/or translation were significantly enriched. Immunohistochemistry in central nervous system tissue from C9orf72+ patients with amyotrophic lateral sclerosis demonstrated co-localization of RNA foci with SRSF2, hnRNP H1/F, ALYREF and hnRNP A1 in cerebellar granule cells and with SRSF2, hnRNP H1/F and ALYREF in motor neurons, the primary target of pathology in amyotrophic lateral sclerosis. Direct binding of proteins to GGGGCC repeat RNA was confirmed in vitro by ultraviolet-crosslinking assays. Co-localization was only detected in a small proportion of RNA foci, suggesting dynamic sequestration rather than irreversible binding. Additional immunohistochemistry demonstrated that neurons with and without RNA foci were equally likely to show nuclear depletion of TDP-43 (χ(2) P = 0.75) or poly-GA dipeptide repeat protein inclusions (χ(2) P = 0.46). Our findings suggest two non-exclusive pathogenic mechanisms: (i) functional depletion of RNA-processing proteins resulting in disruption of messenger RNA splicing; and (ii) licensing of expanded C9orf72 pre-messenger RNA for nuclear export by inappropriate association with messenger RNA export adaptor protein(s) leading to cytoplasmic repeat associated non-ATG translation and formation of potentially toxic dipeptide repeat protein.
C9orf72基因的GGGGCC重复扩增是肌萎缩侧索硬化症和额颞叶变性最常见的基因变异,但发病机制尚不清楚。最近的报道表明,转录的重复序列可能形成有毒的RNA病灶,从而隔离各种RNA加工蛋白。目前对于结合伴侣的身份尚未达成共识,因此需要对整个神经元蛋白质组进行研究。我们首先使用RNA荧光原位杂交技术,在C9orf72基因重复扩增的肌萎缩侧索硬化症患者(C9orf72+)的外周和中枢神经系统生物样本中,而非在没有C9orf72基因重复扩增的患者(C9orf72-)或对照受试者的样本中,鉴定出了细胞核和细胞质中的RNA病灶。此外,在所检查的病例中,病灶阳性神经元的分布与临床表型相关(t检验P<0.05)。正如预期的那样,RNA酶处理可消除RNA病灶。有趣的是,我们在一名无症状C9orf72+携带者的成纤维细胞中发现了病灶。接下来,我们使用GGGGCC5进行下拉实验,并结合质谱分析,以鉴定GGGGCC重复扩增的候选结合伴侣。含有RNA识别基序并参与剪接、信使核糖核酸核输出和/或翻译的蛋白质显著富集。对C9orf72+肌萎缩侧索硬化症患者中枢神经系统组织进行免疫组织化学分析显示,在小脑颗粒细胞中,RNA病灶与SRSF2、hnRNP H1/F、ALYREF和hnRNP A1共定位,在运动神经元中,RNA病灶与SRSF2、hnRNP H1/F和ALYREF共定位,运动神经元是肌萎缩侧索硬化症病理的主要靶点。通过紫外线交联实验在体外证实了蛋白质与GGGGCC重复RNA的直接结合。仅在一小部分RNA病灶中检测到共定位,这表明是动态隔离而非不可逆结合。进一步的免疫组织化学分析表明,有和没有RNA病灶的神经元显示TDP-43核内缺失(χ(2)检验P = 0.75)或聚GA二肽重复蛋白包涵体(χ(2)检验P = 0.46)的可能性相同。我们的研究结果提示了两种非排他性的致病机制:(i)RNA加工蛋白的功能缺失导致信使核糖核酸剪接中断;(ii)扩展的C9orf72前信使核糖核酸通过与信使核糖核酸输出衔接蛋白不适当结合而获得核输出许可,导致细胞质中重复相关的非ATG翻译,并形成潜在有毒的二肽重复蛋白。