Deniaud-Bouët Estelle, Kervarec Nelly, Michel Gurvan, Tonon Thierry, Kloareg Bernard, Hervé Cécile
Sorbonne Universités, UPMC Université Paris 06, UMR 8227 Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff cedex, France CNRS, UMR 8227 Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff cedex, France.
Service RMN-RPE, UFR Sciences et Techniques, Université de Bretagne Occidentale (UBO), Avenue Le Gorgeu, 29200 Brest, France.
Ann Bot. 2014 Oct;114(6):1203-16. doi: 10.1093/aob/mcu096. Epub 2014 May 29.
Brown algae are photosynthetic multicellular marine organisms evolutionarily distant from land plants, with a distinctive cell wall. They feature carbohydrates shared with plants (cellulose), animals (fucose-containing sulfated polysaccharides, FCSPs) or bacteria (alginates). How these components are organized into a three-dimensional extracellular matrix (ECM) still remains unclear. Recent molecular analysis of the corresponding biosynthetic routes points toward a complex evolutionary history that shaped the ECM structure in brown algae.
Exhaustive sequential extractions and composition analyses of cell wall material from various brown algae of the order Fucales were performed. Dedicated enzymatic degradations were used to release and identify cell wall partners. This approach was complemented by systematic chromatographic analysis to study polymer interlinks further. An additional structural assessment of the sulfated fucan extracted from Himanthalia elongata was made.
The data indicate that FCSPs are tightly associated with proteins and cellulose within the walls. Alginates are associated with most phenolic compounds. The sulfated fucans from H. elongata were shown to have a regular α-(1→3) backbone structure, while an alternating α-(1→3), (1→4) structure has been described in some brown algae from the order Fucales.
The data provide a global snapshot of the cell wall architecture in brown algae, and contribute to the understanding of the structure-function relationships of the main cell wall components. Enzymatic cross-linking of alginates by phenols may regulate the strengthening of the wall, and sulfated polysaccharides may play a key role in the adaptation to osmotic stress. The emergence and evolution of ECM components is further discussed in relation to the evolution of multicellularity in brown algae.
褐藻是光合多细胞海洋生物,在进化上与陆地植物距离较远,具有独特的细胞壁。它们具有与植物(纤维素)、动物(含岩藻糖的硫酸化多糖,FCSPs)或细菌(藻酸盐)共有的碳水化合物。这些成分如何组织成三维细胞外基质(ECM)仍不清楚。最近对相应生物合成途径的分子分析表明,其具有复杂的进化历史,塑造了褐藻的ECM结构。
对墨角藻目各种褐藻的细胞壁材料进行了详尽的顺序提取和成分分析。使用专门的酶促降解来释放和鉴定细胞壁成分。通过系统的色谱分析对该方法进行补充,以进一步研究聚合物交联。对从长囊水云提取的硫酸化岩藻聚糖进行了额外的结构评估。
数据表明,FCSPs与细胞壁内的蛋白质和纤维素紧密相关。藻酸盐与大多数酚类化合物相关。长囊水云的硫酸化岩藻聚糖显示具有规则的α-(1→3)主链结构,而在墨角藻目的一些褐藻中描述了交替的α-(1→3),(1→4)结构。
数据提供了褐藻细胞壁结构的整体概况,有助于理解主要细胞壁成分的结构-功能关系。酚类对藻酸盐的酶促交联可能调节细胞壁的强化,硫酸化多糖可能在适应渗透胁迫中起关键作用。还结合褐藻多细胞性的进化进一步讨论了ECM成分的出现和进化。