Suppr超能文献

基于人类行为的粒子群优化算法。

Human behavior-based particle swarm optimization.

作者信息

Liu Hao, Xu Gang, Ding Gui-Yan, Sun Yu-Bo

机构信息

School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, China ; School of Science, University of Science and Technology Liaoning, Anshan 114051, China.

Department of Mathematics, Nanchang University, Nanchang 330031, China.

出版信息

ScientificWorldJournal. 2014;2014:194706. doi: 10.1155/2014/194706. Epub 2014 Apr 17.

Abstract

Particle swarm optimization (PSO) has attracted many researchers interested in dealing with various optimization problems, owing to its easy implementation, few tuned parameters, and acceptable performance. However, the algorithm is easy to trap in the local optima because of rapid losing of the population diversity. Therefore, improving the performance of PSO and decreasing the dependence on parameters are two important research hot points. In this paper, we present a human behavior-based PSO, which is called HPSO. There are two remarkable differences between PSO and HPSO. First, the global worst particle was introduced into the velocity equation of PSO, which is endowed with random weight which obeys the standard normal distribution; this strategy is conducive to trade off exploration and exploitation ability of PSO. Second, we eliminate the two acceleration coefficients c 1 and c 2 in the standard PSO (SPSO) to reduce the parameters sensitivity of solved problems. Experimental results on 28 benchmark functions, which consist of unimodal, multimodal, rotated, and shifted high-dimensional functions, demonstrate the high performance of the proposed algorithm in terms of convergence accuracy and speed with lower computation cost.

摘要

粒子群优化算法(PSO)因其易于实现、调优参数少且性能可接受,吸引了众多致力于处理各种优化问题的研究人员。然而,由于种群多样性迅速丧失,该算法容易陷入局部最优。因此,提高PSO的性能并降低对参数的依赖性是两个重要的研究热点。在本文中,我们提出了一种基于人类行为的PSO,称为HPSO。PSO和HPSO之间有两个显著差异。首先,将全局最差粒子引入PSO的速度方程中,并赋予其服从标准正态分布的随机权重;该策略有助于权衡PSO的探索和利用能力。其次,我们在标准PSO(SPSO)中消除了两个加速系数c1和c2,以降低求解问题的参数敏感性。在由单峰、多峰、旋转和移位高维函数组成的28个基准函数上的实验结果表明,该算法在收敛精度和速度方面具有高性能,且计算成本较低。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea19/4030565/8d4a04bb7257/TSWJ2014-194706.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验