Suppr超能文献

基于预测误差的记忆修剪。

Pruning of memories by context-based prediction error.

机构信息

Department of Psychology andPrinceton Neuroscience Institute, Princeton University, Princeton, NJ 08544; and.

Department of Psychology andInstitute for Neuroscience, University of Texas at Austin, Austin, TX 78712.

出版信息

Proc Natl Acad Sci U S A. 2014 Jun 17;111(24):8997-9002. doi: 10.1073/pnas.1319438111. Epub 2014 Jun 2.

Abstract

The capacity of long-term memory is thought to be virtually unlimited. However, our memory bank may need to be pruned regularly to ensure that the information most important for behavior can be stored and accessed efficiently. Using functional magnetic resonance imaging of the human brain, we report the discovery of a context-based mechanism for determining which memories to prune. Specifically, when a previously experienced context is reencountered, the brain automatically generates predictions about which items should appear in that context. If an item fails to appear when strongly expected, its representation in memory is weakened, and it is more likely to be forgotten. We find robust support for this mechanism using multivariate pattern classification and pattern similarity analyses. The results are explained by a model in which context-based predictions activate item representations just enough for them to be weakened during a misprediction. These findings reveal an ongoing and adaptive process for pruning unreliable memories.

摘要

长期记忆的容量被认为几乎是无限的。然而,我们的记忆库可能需要定期修剪,以确保对行为最重要的信息能够被高效地存储和访问。我们利用人类大脑的功能磁共振成像,报告了一种基于上下文的机制的发现,用于确定要修剪哪些记忆。具体来说,当以前经历过的上下文再次出现时,大脑会自动生成关于哪些项目应该出现在该上下文中的预测。如果一个项目在强烈预期时没有出现,它在记忆中的表示就会减弱,并且更有可能被遗忘。我们使用多元模式分类和模式相似性分析为这个机制找到了强有力的支持。结果可以用一个模型来解释,该模型认为基于上下文的预测会激活项目的表示,以便在预测错误时足以削弱它们。这些发现揭示了一种持续的、自适应的过程,可以修剪不可靠的记忆。

相似文献

1
Pruning of memories by context-based prediction error.
Proc Natl Acad Sci U S A. 2014 Jun 17;111(24):8997-9002. doi: 10.1073/pnas.1319438111. Epub 2014 Jun 2.
2
Neural Differentiation of Incorrectly Predicted Memories.
J Neurosci. 2017 Feb 22;37(8):2022-2031. doi: 10.1523/JNEUROSCI.3272-16.2017. Epub 2017 Jan 23.
3
Trial timing and pattern-information analyses of fMRI data.
Neuroimage. 2017 Jun;153:221-231. doi: 10.1016/j.neuroimage.2017.04.025. Epub 2017 Apr 12.
4
Brain localization of memory chunks in chessplayers.
Int J Neurosci. 2007 Dec;117(12):1641-59. doi: 10.1080/00207450601041955.
5
Distinct neural mechanisms for remembering when an event occurred.
Hippocampus. 2016 May;26(5):554-9. doi: 10.1002/hipo.22571. Epub 2016 Feb 25.
6
The Hippocampus Generalizes across Memories that Share Item and Context Information.
J Cogn Neurosci. 2019 Jan;31(1):24-35. doi: 10.1162/jocn_a_01345. Epub 2018 Sep 21.
7
Predictability Changes What We Remember in Familiar Temporal Contexts.
J Cogn Neurosci. 2020 Jan;32(1):124-140. doi: 10.1162/jocn_a_01473. Epub 2019 Sep 27.
8
Probing the neural dynamics of mnemonic representations after the initial consolidation.
Neuroimage. 2020 Nov 1;221:117213. doi: 10.1016/j.neuroimage.2020.117213. Epub 2020 Jul 31.
9
Beyond mind-reading: multi-voxel pattern analysis of fMRI data.
Trends Cogn Sci. 2006 Sep;10(9):424-30. doi: 10.1016/j.tics.2006.07.005. Epub 2006 Aug 8.
10
A functional magnetic resonance imaging investigation of short-term source and item memory for negative pictures.
Neuroreport. 2006 Oct 2;17(14):1543-7. doi: 10.1097/01.wnr.0000234743.50442.e5.

引用本文的文献

1
Neural representations of visual statistical learning based on temporal duration.
Imaging Neurosci (Camb). 2025 Sep 3;3. doi: 10.1162/IMAG.a.135. eCollection 2025.
2
Event perception and event memory in real-world experience.
Nat Rev Psychol. 2024 Nov;3(11):754-766. doi: 10.1038/s44159-024-00367-0. Epub 2024 Oct 10.
3
Schemas, reinforcement learning and the medial prefrontal cortex.
Nat Rev Neurosci. 2025 Mar;26(3):141-157. doi: 10.1038/s41583-024-00893-z. Epub 2025 Jan 7.
4
Memory updating and the structure of event representations.
Trends Cogn Sci. 2025 Apr;29(4):380-392. doi: 10.1016/j.tics.2024.11.008. Epub 2024 Dec 11.
5
The role of REM sleep in neural differentiation of memories in the hippocampus.
bioRxiv. 2024 Nov 3:2024.11.01.621588. doi: 10.1101/2024.11.01.621588.
6
Modeling human activity comprehension at human scale: prediction, segmentation, and categorization.
PNAS Nexus. 2024 Oct 11;3(10):pgae459. doi: 10.1093/pnasnexus/pgae459. eCollection 2024 Oct.
7
Memory augmentation with an adaptive cognitive interface.
Psychon Bull Rev. 2025 Apr;32(2):875-886. doi: 10.3758/s13423-024-02589-y. Epub 2024 Oct 8.
8
A neural network model of differentiation and integration of competing memories.
Elife. 2024 Sep 25;12:RP88608. doi: 10.7554/eLife.88608.
9
Event Segmentation Promotes the Reorganization of Emotional Memory.
J Cogn Neurosci. 2025 Jan 2;37(1):110-134. doi: 10.1162/jocn_a_02244.
10
Suppressing the Maintenance of Information in Working Memory Alters Long-term Memory Traces.
J Cogn Neurosci. 2024 Oct 1;36(10):2117-2136. doi: 10.1162/jocn_a_02206.

本文引用的文献

1
The context repetition effect: predicted events are remembered better, even when they don't happen.
J Exp Psychol Gen. 2013 Nov;142(4):1298-308. doi: 10.1037/a0034067. Epub 2013 Aug 19.
2
Moderate levels of activation lead to forgetting in the think/no-think paradigm.
Neuropsychologia. 2013 Oct;51(12):2371-88. doi: 10.1016/j.neuropsychologia.2013.02.017. Epub 2013 Mar 7.
3
Shaping of object representations in the human medial temporal lobe based on temporal regularities.
Curr Biol. 2012 Sep 11;22(17):1622-7. doi: 10.1016/j.cub.2012.06.056. Epub 2012 Aug 9.
4
Less is more: expectation sharpens representations in the primary visual cortex.
Neuron. 2012 Jul 26;75(2):265-70. doi: 10.1016/j.neuron.2012.04.034.
5
Scene representations in parahippocampal cortex depend on temporal context.
J Neurosci. 2012 May 23;32(21):7202-7. doi: 10.1523/JNEUROSCI.0942-12.2012.
6
Multi-voxel patterns of visual category representation during episodic encoding are predictive of subsequent memory.
Neuropsychologia. 2012 Mar;50(4):458-69. doi: 10.1016/j.neuropsychologia.2011.09.002. Epub 2011 Sep 8.
7
Moderate excitation leads to weakening of perceptual representations.
Cereb Cortex. 2010 Nov;20(11):2760-70. doi: 10.1093/cercor/bhq021. Epub 2010 Feb 24.
8
Representational similarity analysis - connecting the branches of systems neuroscience.
Front Syst Neurosci. 2008 Nov 24;2:4. doi: 10.3389/neuro.06.004.2008. eCollection 2008.
9
Dialogues on prediction errors.
Trends Cogn Sci. 2008 Jul;12(7):265-72. doi: 10.1016/j.tics.2008.03.006. Epub 2008 Jun 21.
10
A neural network model of retrieval-induced forgetting.
Psychol Rev. 2007 Oct;114(4):887-953. doi: 10.1037/0033-295X.114.4.887.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验