Suppr超能文献

适度的兴奋会导致感知表象变弱。

Moderate excitation leads to weakening of perceptual representations.

机构信息

Center for Memory and Brain, Boston University, Boston, MA 02215, USA.

出版信息

Cereb Cortex. 2010 Nov;20(11):2760-70. doi: 10.1093/cercor/bhq021. Epub 2010 Feb 24.

Abstract

A fundamental goal of memory research is to specify the conditions that lead to the strengthening and weakening of neural representations. Several computational models of memory formation predict that learning effects should vary as a nonmonotonic function of the amount of excitation received by a neural representation. Specifically, moderate excitation should result in synaptic weakening, while strong excitation should result in synaptic strengthening. In vitro investigations of plasticity in rodents have provided support for this prediction at the level of single synapses. However, it remains unclear whether this principle scales beyond the synapse to cortical representations and manifests changes in behavior. To address this question, we used electroencephalogram pattern classification in human subjects to measure trial-by-trial fluctuations in stimulus processing, and we used a negative priming paradigm to measure learning effects. In keeping with the idea that moderate excitation leads to weakening, moderate levels of stimulus processing were associated with negative priming (slower subsequent responding to the stimulus), but higher and lower levels of stimulus processing were not associated with negative priming. These results suggest that the same principles that account for synaptic weakening in rodents can also account for diminished accessibility of perceptual representations in humans.

摘要

记忆研究的一个基本目标是确定导致神经表示强化和弱化的条件。几种记忆形成的计算模型预测,学习效果应该随着神经表示所接收的兴奋量的非单调函数而变化。具体来说,适度的兴奋应该导致突触减弱,而强烈的兴奋应该导致突触增强。在体外对啮齿动物的可塑性研究在单个突触水平上为这一预测提供了支持。然而,尚不清楚这一原则是否可以扩展到皮层表示,并表现出行为上的变化。为了解决这个问题,我们使用脑电图模式分类来测量人类被试在刺激处理过程中的逐次波动,并使用负启动范式来测量学习效果。与适度兴奋导致减弱的观点一致,适度的刺激处理水平与负启动(对刺激的后续反应较慢)相关,但较高和较低的刺激处理水平与负启动无关。这些结果表明,解释在啮齿动物中突触减弱的相同原则也可以解释人类感知表示的可及性降低。

相似文献

1
Moderate excitation leads to weakening of perceptual representations.
Cereb Cortex. 2010 Nov;20(11):2760-70. doi: 10.1093/cercor/bhq021. Epub 2010 Feb 24.
2
Fast Learning with Weak Synaptic Plasticity.
J Neurosci. 2015 Sep 30;35(39):13351-62. doi: 10.1523/JNEUROSCI.0607-15.2015.
3
Learning perceptual skills: behavioral probes into adult cortical plasticity.
Curr Opin Neurobiol. 1997 Aug;7(4):530-5. doi: 10.1016/s0959-4388(97)80033-5.
4
Associable representations as field of influence for dynamic cognitive processes.
J Integr Neurosci. 2011 Dec;10(4):423-37. doi: 10.1142/S0219635211002889.
5
Neuroanatomical organization of perceptual memory: an fMRI study of picture priming.
Hum Brain Mapp. 2000 Aug;10(4):197-203. doi: 10.1002/1097-0193(200008)10:4<197::aid-hbm50>3.0.co;2-b.
6
From perceptual to lexico-semantic analysis--cortical plasticity enabling new levels of processing.
Hum Brain Mapp. 2015 Nov;36(11):4512-28. doi: 10.1002/hbm.22939. Epub 2015 Aug 25.
8
A theory of cortical responses.
Philos Trans R Soc Lond B Biol Sci. 2005 Apr 29;360(1456):815-36. doi: 10.1098/rstb.2005.1622.
9
Perceptual learning and adult cortical plasticity.
J Physiol. 2009 Jun 15;587(Pt 12):2743-51. doi: 10.1113/jphysiol.2009.171488.
10
Neuronal bases of perceptual learning revealed by a synaptic balance scheme.
Neural Comput. 2004 Mar;16(3):563-94. doi: 10.1162/089976604772744910.

引用本文的文献

1
Segregation-to-integration transformation model of memory evolution.
Netw Neurosci. 2024 Dec 10;8(4):1529-1544. doi: 10.1162/netn_a_00415. eCollection 2024.
2
The role of REM sleep in neural differentiation of memories in the hippocampus.
bioRxiv. 2024 Nov 3:2024.11.01.621588. doi: 10.1101/2024.11.01.621588.
3
A neural network model of differentiation and integration of competing memories.
Elife. 2024 Sep 25;12:RP88608. doi: 10.7554/eLife.88608.
4
Memory and belief updating following complete and partial reminders of fake news.
Cogn Res Princ Implic. 2024 May 7;9(1):28. doi: 10.1186/s41235-024-00546-w.
5
The testing effect for visual materials depends on preexisting knowledge.
J Exp Psychol Learn Mem Cogn. 2023 Oct;49(10):1557-1571. doi: 10.1037/xlm0001248. Epub 2023 Jun 8.
6
Differentiation and Integration of Competing Memories: A Neural Network Model.
bioRxiv. 2024 Jun 25:2023.04.02.535239. doi: 10.1101/2023.04.02.535239.
7
A smartphone intervention that enhances real-world memory and promotes differentiation of hippocampal activity in older adults.
Proc Natl Acad Sci U S A. 2022 Dec 20;119(51):e2214285119. doi: 10.1073/pnas.2214285119. Epub 2022 Dec 13.
8
Phase separation of competing memories along the human hippocampal theta rhythm.
Elife. 2022 Nov 17;11:e80633. doi: 10.7554/eLife.80633.
9
Remembering a Virtual Museum Tour: Viewing Time, Memory Reactivation, and Memory Distortion.
Front Psychol. 2022 Apr 14;13:869336. doi: 10.3389/fpsyg.2022.869336. eCollection 2022.

本文引用的文献

1
Negative priming from ignored distractors in visual selection: A review.
Psychon Bull Rev. 1995 Jun;2(2):145-73. doi: 10.3758/BF03210958.
3
A neural network model of retrieval-induced forgetting.
Psychol Rev. 2007 Oct;114(4):887-953. doi: 10.1037/0033-295X.114.4.887.
4
Failures to find suppression of episodic memories in the think/no-think paradigm.
Mem Cognit. 2006 Dec;34(8):1569-77. doi: 10.3758/bf03195920.
5
Neural representation of task difficulty and decision making during perceptual categorization: a timing diagram.
J Neurosci. 2006 Aug 30;26(35):8965-75. doi: 10.1523/JNEUROSCI.1655-06.2006.
6
Decoding mental states from brain activity in humans.
Nat Rev Neurosci. 2006 Jul;7(7):523-34. doi: 10.1038/nrn1931.
7
How inhibitory oscillations can train neural networks and punish competitors.
Neural Comput. 2006 Jul;18(7):1577-610. doi: 10.1162/neco.2006.18.7.1577.
8
Category-specific cortical activity precedes retrieval during memory search.
Science. 2005 Dec 23;310(5756):1963-6. doi: 10.1126/science.1117645.
9
Neural measures reveal individual differences in controlling access to working memory.
Nature. 2005 Nov 24;438(7067):500-3. doi: 10.1038/nature04171.
10
Learning only when necessary: better memories of correlated patterns in networks with bounded synapses.
Neural Comput. 2005 Oct;17(10):2106-38. doi: 10.1162/0899766054615644.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验