Suppr超能文献

在光学定义的环形势中,耦合反向旋转的极化激元凝聚体。

Coupled counterrotating polariton condensates in optically defined annular potentials.

机构信息

Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom;

Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, United Kingdom;

出版信息

Proc Natl Acad Sci U S A. 2014 Jun 17;111(24):8770-5. doi: 10.1073/pnas.1401988111. Epub 2014 Jun 2.

Abstract

Polariton condensates are macroscopic quantum states formed by half-matter half-light quasiparticles, thus connecting the phenomena of atomic Bose-Einstein condensation, superfluidity, and photon lasing. Here we report the spontaneous formation of such condensates in programmable potential landscapes generated by two concentric circles of light. The imposed geometry supports the emergence of annular states that extend up to 100 μm, yet are fully coherent and exhibit a spatial structure that remains stable for minutes at a time. These states exhibit a petal-like intensity distribution arising due to the interaction of two superfluids counterpropagating in the circular waveguide defined by the optical potential. In stark contrast to annular modes in conventional lasing systems, the resulting standing wave patterns exhibit only minimal overlap with the pump laser itself. We theoretically describe the system using a complex Ginzburg-Landau equation, which indicates why the condensate wants to rotate. Experimentally, we demonstrate the ability to precisely control the structure of the petal condensates both by carefully modifying the excitation geometry as well as perturbing the system on ultrafast timescales to reveal unexpected superfluid dynamics.

摘要

极化激元凝聚态是由半物质半光准粒子形成的宏观量子态,因此将原子玻色-爱因斯坦凝聚、超流和光子激光等现象联系起来。在这里,我们报告了在由两个同心光圆产生的可编程势场中自发形成这种凝聚态的情况。所施加的几何形状支持环形态的出现,其延伸可达 100 μm,但完全相干,并表现出稳定的空间结构,一次可稳定几分钟。这些状态表现出由于在由光势能定义的圆形波导中反向传播的两个超流体的相互作用而产生的花瓣状强度分布。与传统激光系统中的环形模式形成鲜明对比的是,所得的驻波模式与泵浦激光本身的重叠最小。我们使用复金兹堡-朗道方程理论上描述了该系统,该方程指出了凝聚态想要旋转的原因。实验上,我们通过仔细修改激发几何形状以及在超快时间尺度上对系统进行微扰来证明能够精确控制花瓣凝聚态的结构,从而揭示出意想不到的超流动力学。

相似文献

1
Coupled counterrotating polariton condensates in optically defined annular potentials.
Proc Natl Acad Sci U S A. 2014 Jun 17;111(24):8770-5. doi: 10.1073/pnas.1401988111. Epub 2014 Jun 2.
3
Coherent zero-state and pi-state in an exciton-polariton condensate array.
Nature. 2007 Nov 22;450(7169):529-32. doi: 10.1038/nature06334.
4
Selective Excitation of Exciton-Polariton Condensate Modes in an Annular Perovskite Microcavity.
Nano Lett. 2024 Apr 15;24(16):4959-64. doi: 10.1021/acs.nanolett.4c00634.
5
Optical superfluid phase transitions and trapping of polariton condensates.
Phys Rev Lett. 2013 May 3;110(18):186403. doi: 10.1103/PhysRevLett.110.186403. Epub 2013 May 1.
6
Optically Driven Rotation of Exciton-Polariton Condensates.
Nano Lett. 2023 May 24;23(10):4564-4571. doi: 10.1021/acs.nanolett.3c01021. Epub 2023 May 2.
7
Polariton Bose-Einstein condensate from a bound state in the continuum.
Nature. 2022 May;605(7910):447-452. doi: 10.1038/s41586-022-04583-7. Epub 2022 May 18.
8
Controllable vortex lasing arrays in a geometrically frustrated exciton-polariton lattice at room temperature.
Natl Sci Rev. 2022 May 14;10(1):nwac096. doi: 10.1093/nsr/nwac096. eCollection 2023 Jan.
9
From polariton condensates to highly photonic quantum degenerate states of bosonic matter.
Proc Natl Acad Sci U S A. 2011 Feb 1;108(5):1804-9. doi: 10.1073/pnas.1009847108. Epub 2011 Jan 18.
10
Quantum vortex formation in the "rotating bucket" experiment with polariton condensates.
Sci Adv. 2023 Jan 25;9(4):eadd1299. doi: 10.1126/sciadv.add1299.

引用本文的文献

1
Qubit analog with polariton superfluid in an annular trap.
Sci Adv. 2024 Oct 25;10(43):eado4042. doi: 10.1126/sciadv.ado4042. Epub 2024 Oct 23.
2
Stochastic circular persistent currents of exciton polaritons.
Sci Rep. 2024 Jun 5;14(1):12953. doi: 10.1038/s41598-024-63725-1.
3
Critical fluctuations in a confined driven-dissipative quantum condensate.
Sci Adv. 2024 Mar 22;10(12):eadi6762. doi: 10.1126/sciadv.adi6762.
4
Steady state oscillations of circular currents in concentric polariton condensates.
Sci Rep. 2023 Mar 21;13(1):4607. doi: 10.1038/s41598-023-31520-z.
6
Realization of all-optical vortex switching in exciton-polariton condensates.
Nat Commun. 2020 Feb 14;11(1):897. doi: 10.1038/s41467-020-14702-5.
7
Effects of the non-parabolic kinetic energy on non-equilibrium polariton condensates.
Sci Rep. 2017 May 15;7(1):1891. doi: 10.1038/s41598-017-01113-8.
8
A sub-femtojoule electrical spin-switch based on optically trapped polariton condensates.
Nat Mater. 2016 Oct;15(10):1074-8. doi: 10.1038/nmat4722. Epub 2016 Aug 8.
9
Bright solitons in non-equilibrium coherent quantum matter.
Proc Math Phys Eng Sci. 2016 Jan;472(2185):20150592. doi: 10.1098/rspa.2015.0592.
10
Vortex and half-vortex dynamics in a nonlinear spinor quantum fluid.
Sci Adv. 2015 Dec 4;1(11):e1500807. doi: 10.1126/sciadv.1500807. eCollection 2015 Dec.

本文引用的文献

1
Optical superfluid phase transitions and trapping of polariton condensates.
Phys Rev Lett. 2013 May 3;110(18):186403. doi: 10.1103/PhysRevLett.110.186403. Epub 2013 May 1.
2
Spontaneous pattern formation in a polariton condensate.
Phys Rev Lett. 2011 Sep 2;107(10):106401. doi: 10.1103/PhysRevLett.107.106401.
3
Microparticle movements in optical funnels and pods.
Opt Express. 2011 Mar 14;19(6):5232-43. doi: 10.1364/OE.19.005232.
4
Dynamics of long-range ordering in an exciton-polariton condensate.
Phys Rev Lett. 2009 Dec 18;103(25):256402. doi: 10.1103/PhysRevLett.103.256402. Epub 2009 Dec 15.
5
Collective fluid dynamics of a polariton condensate in a semiconductor microcavity.
Nature. 2009 Jan 15;457(7227):291-5. doi: 10.1038/nature07640.
6
Optical circuits based on polariton neurons in semiconductor microcavities.
Phys Rev Lett. 2008 Jul 4;101(1):016402. doi: 10.1103/PhysRevLett.101.016402. Epub 2008 Jul 1.
7
Spontaneous rotating vortex lattices in a pumped decaying condensate.
Phys Rev Lett. 2008 Jun 27;100(25):250401. doi: 10.1103/PhysRevLett.100.250401. Epub 2008 Jun 23.
9
Excitations in a nonequilibrium Bose-Einstein condensate of exciton polaritons.
Phys Rev Lett. 2007 Oct 5;99(14):140402. doi: 10.1103/PhysRevLett.99.140402. Epub 2007 Oct 3.
10
Bose-Einstein condensation of microcavity polaritons in a trap.
Science. 2007 May 18;316(5827):1007-10. doi: 10.1126/science.1140990.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验