Wang Jun, Peng Yutian, Xu Huawen, Feng Jiangang, Huang Yuqing, Wu Jinqi, Liew Timothy C H, Xiong Qihua
Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore.
Department of Optical Science and Engineering, and Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Fudan University, Shanghai 200433, China.
Natl Sci Rev. 2022 May 14;10(1):nwac096. doi: 10.1093/nsr/nwac096. eCollection 2023 Jan.
Quantized vortices appearing in topological excitations of quantum phase transition play a pivotal role in strongly correlated physics involving the underlying confluence of superfluids, Bose-Einstein condensates and superconductors. Exciton polaritons as bosonic quasiparticles have enabled studies of non-equilibrium quantum gases and superfluidity. Exciton-polariton condensates in artificial lattices intuitively emulate energy-band structures and quantum many-body effects of condensed matter, underpinning constructing vortex lattices and controlling quantum fluidic circuits. Here, we harness exciton-polariton quantum fluids of light in a frustrated kagome lattice based on robust metal-halide perovskite microcavities, to demonstrate vortex lasing arrays and modulate their configurations at room temperature. Tomographic energy-momentum spectra unambiguously reveal massless Dirac bands and quenched kinetic-energy flat bands coexisting in kagome lattices, where polariton condensates exhibit prototypical honeycomb and kagome spatial patterns. Spatial coherence investigations illustrate two types of phase textures of polariton condensates carrying ordered quantized-vortex arrays and π-phase shifts, which could be selected when needed using lasing emission energy. Our findings offer a promising platform on which it is possible to study quantum-fluid correlations in complex polaritonic lattices and highlight feasible applications of structured light.
出现在量子相变拓扑激发中的量子化涡旋,在涉及超流体、玻色 - 爱因斯坦凝聚体和超导体潜在融合的强关联物理中起着关键作用。激子极化激元作为玻色子准粒子,使得对非平衡量子气体和超流性的研究成为可能。人工晶格中的激子 - 极化激元凝聚体直观地模拟了凝聚态物质的能带结构和量子多体效应,为构建涡旋晶格和控制量子流体电路奠定了基础。在此,我们利用基于坚固金属卤化物钙钛矿微腔的受挫 Kagome 晶格中的激子 - 极化激元光量子流体,在室温下展示涡旋激光阵列并调制其构型。层析能量 - 动量谱明确揭示了 Kagome 晶格中无质量狄拉克带和淬灭动能平带共存的现象,其中极化激元凝聚体呈现出典型的蜂窝状和 Kagome 空间图案。空间相干性研究表明,携带有序量子化涡旋阵列和π相移的极化激元凝聚体存在两种类型的相位纹理,可根据激光发射能量在需要时进行选择。我们的研究结果提供了一个有前景的平台,在此平台上可以研究复杂极化激元晶格中的量子流体相关性,并突出结构化光的可行应用。