Hybrid Photonics Laboratory, Skolkovo Institute of Science and Technology, Territory of Innovation Center Skolkovo, Bolshoy Boulevard 30, building 1, 121205 Moscow, Russia.
School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, UK.
Sci Adv. 2023 Jan 25;9(4):eadd1299. doi: 10.1126/sciadv.add1299.
The appearance of quantized vortices in the classical "rotating bucket" experiments of liquid helium and ultracold dilute gases provides the means for fundamental and comparative studies of different superfluids. Here, we realize the rotating bucket experiment for optically trapped quantum fluid of light based on exciton-polariton Bose-Einstein condensate in semiconductor microcavity. We use the beating note of two frequency-stabilized single-mode lasers to generate an asymmetric time-periodic rotating, nonresonant excitation profile that both injects and stirs the condensate through its interaction with a background exciton reservoir. The pump-induced external rotation of the condensate results in the appearance of a corotating quantized vortex. We investigate the rotation frequency dependence and reveal the range of stirring frequencies (from 1 to 4 GHz) that favors quantized vortex formation. We describe the phenomenology using the generalized Gross-Pitaevskii equation. Our results enable the study of polariton superfluidity on a par with other superfluids, as well as deterministic, all-optical control over structured nonlinear light.
在经典的液氦和超冷稀气体“旋转桶”实验中出现的量子涡旋为不同超流体的基础和比较研究提供了手段。在这里,我们基于半导体微腔中的激子极化激元玻色-爱因斯坦凝聚体实现了光俘获量子光的旋转桶实验。我们使用两个频率稳定的单模激光器的拍频来产生非共振的、时变的、非对称的旋转激发轮廓,通过与背景激子库的相互作用来注入和搅拌凝聚体。泵浦诱导的凝聚体的外部旋转导致共旋转的量子涡旋的出现。我们研究了旋转频率的依赖性,并揭示了有利于量子涡旋形成的搅拌频率范围(从 1GHz 到 4GHz)。我们使用广义 Gross-Pitaevskii 方程来描述这一现象。我们的结果使得对极化激元超流性的研究能够与其他超流体相媲美,同时也能够实现对结构非线性光的确定性、全光学控制。