Suppr超能文献

流感持续面临的挑战。

Continuing challenges in influenza.

作者信息

Webster Robert G, Govorkova Elena A

机构信息

Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee.

出版信息

Ann N Y Acad Sci. 2014 Sep;1323(1):115-39. doi: 10.1111/nyas.12462. Epub 2014 May 30.

Abstract

Influenza is an acute respiratory disease in mammals and domestic poultry that emerges from zoonotic reservoirs in aquatic birds and bats. Although influenza viruses are among the most intensively studied pathogens, existing control options require further improvement. Influenza vaccines must be regularly updated because of continuous antigenic drift and sporadic antigenic shifts in the viral surface glycoproteins. Currently, influenza therapeutics are limited to neuraminidase inhibitors; novel drugs and vaccine approaches are therefore urgently needed. Advances in vaccinology and structural analysis have revealed common antigenic epitopes on hemagglutinins across all influenza viruses and suggest that a universal influenza vaccine is possible. In addition, various immunomodulatory agents and signaling pathway inhibitors are undergoing preclinical development. Continuing challenges in influenza include the emergence of pandemic H1N1 influenza in 2009, human infections with avian H7N9 influenza in 2013, and sporadic human cases of highly pathogenic avian H5N1 influenza. Here, we review the challenges facing influenza scientists and veterinary and human public health officials; we also discuss the exciting possibility of achieving the ultimate goal of controlling influenza's ability to change its antigenicity.

摘要

流感是一种在哺乳动物和家禽中发生的急性呼吸道疾病,源于水禽和蝙蝠中的人畜共患病原体库。尽管流感病毒是研究最为深入的病原体之一,但现有的防控措施仍需进一步改进。由于病毒表面糖蛋白不断发生抗原漂移和偶发抗原转变,流感疫苗必须定期更新。目前,流感治疗药物仅限于神经氨酸酶抑制剂;因此,迫切需要新型药物和疫苗研发方法。疫苗学和结构分析的进展揭示了所有流感病毒血凝素上的共同抗原表位,并表明通用流感疫苗是有可能的。此外,各种免疫调节剂和信号通路抑制剂正在进行临床前开发。流感持续面临的挑战包括2009年甲型H1N1流感大流行、2013年人感染H7N9禽流感以及偶发的人感染高致病性H5N1禽流感病例。在此,我们综述了流感科学家以及兽医和人类公共卫生官员所面临的挑战;我们还讨论了实现控制流感抗原性变化这一最终目标的令人兴奋的可能性。

相似文献

1
Continuing challenges in influenza.
Ann N Y Acad Sci. 2014 Sep;1323(1):115-39. doi: 10.1111/nyas.12462. Epub 2014 May 30.
6
Use of antigenic cartography in vaccine seed strain selection.
Avian Dis. 2010 Mar;54(1 Suppl):220-3. doi: 10.1637/8740-032509-ResNote.1.
7
Generation and evaluation of the trivalent inactivated reassortant vaccine using human, avian, and swine influenza A viruses.
Vaccine. 2008 Jun 2;26(23):2912-8. doi: 10.1016/j.vaccine.2008.03.048. Epub 2008 Apr 11.
8
Development of a new candidate H5N1 avian influenza virus for pre-pandemic vaccine production.
Influenza Other Respir Viruses. 2009 Nov;3(6):287-95. doi: 10.1111/j.1750-2659.2009.00104.x.
9
Improving influenza vaccine virus selection: report of a WHO informal consultation held at WHO headquarters, Geneva, Switzerland, 14-16 June 2010.
Influenza Other Respir Viruses. 2012 Mar;6(2):142-52, e1-5. doi: 10.1111/j.1750-2659.2011.00277.x. Epub 2011 Aug 8.
10
Seasonal, avian, and novel H1N1 influenza: prevention and treatment modalities.
Ann Pharmacother. 2009 Dec;43(12):2001-11. doi: 10.1345/aph.1M557. Epub 2009 Nov 17.

引用本文的文献

1
Occupational Risk from Avian Influenza Viruses at Different Ecological Interfaces Between 1997 and 2019.
Microorganisms. 2025 Jun 14;13(6):1391. doi: 10.3390/microorganisms13061391.
2
The global burden of swine influenza and its mitigation.
Open Vet J. 2025 May;15(5):1866-1879. doi: 10.5455/OVJ.2025.v15.i5.3. Epub 2025 May 31.
4
Mathematical Modeling of Influenza Dynamics: Integrating Seasonality and Gradual Waning Immunity.
Bull Math Biol. 2025 May 16;87(6):75. doi: 10.1007/s11538-025-01454-w.
7
Plasma nontargeted metabolomics study of H1N1 and H3N2 influenza in children.
Front Cell Infect Microbiol. 2025 Apr 4;15:1537726. doi: 10.3389/fcimb.2025.1537726. eCollection 2025.
9
Antiviral activity of silver nanoparticles against H1N1 influenza virus.
BMC Res Notes. 2025 Feb 18;18(1):75. doi: 10.1186/s13104-025-07143-0.
10
SARS-CoV-2 drug resistance and therapeutic approaches.
Heliyon. 2025 Jan 15;11(2):e41980. doi: 10.1016/j.heliyon.2025.e41980. eCollection 2025 Jan 30.

本文引用的文献

1
Early hypercytokinemia is associated with interferon-induced transmembrane protein-3 dysfunction and predictive of fatal H7N9 infection.
Proc Natl Acad Sci U S A. 2014 Jan 14;111(2):769-74. doi: 10.1073/pnas.1321748111. Epub 2013 Dec 23.
2
CD4+ T cell autoimmunity to hypocretin/orexin and cross-reactivity to a 2009 H1N1 influenza A epitope in narcolepsy.
Sci Transl Med. 2013 Dec 18;5(216):216ra176. doi: 10.1126/scitranslmed.3007762.
3
A common solution to group 2 influenza virus neutralization.
Proc Natl Acad Sci U S A. 2014 Jan 7;111(1):445-50. doi: 10.1073/pnas.1319058110. Epub 2013 Dec 11.
5
Risk assessment of H2N2 influenza viruses from the avian reservoir.
J Virol. 2014 Jan;88(2):1175-88. doi: 10.1128/JVI.02526-13. Epub 2013 Nov 13.
6
Entry of influenza A virus: host factors and antiviral targets.
J Gen Virol. 2014 Feb;95(Pt 2):263-277. doi: 10.1099/vir.0.059477-0. Epub 2013 Nov 13.
7
New world bats harbor diverse influenza A viruses.
PLoS Pathog. 2013;9(10):e1003657. doi: 10.1371/journal.ppat.1003657. Epub 2013 Oct 10.
8
Outbreak of variant influenza A(H3N2) virus in the United States.
Clin Infect Dis. 2013 Dec;57(12):1703-12. doi: 10.1093/cid/cit649. Epub 2013 Sep 24.
9
Vaccine-induced anti-HA2 antibodies promote virus fusion and enhance influenza virus respiratory disease.
Sci Transl Med. 2013 Aug 28;5(200):200ra114. doi: 10.1126/scitranslmed.3006366.
10
Universal flu vaccines: primum non nocere.
Sci Transl Med. 2013 Aug 28;5(200):200fs34. doi: 10.1126/scitranslmed.3007118.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验