Suppr超能文献

生物钟无处不在:揭示下丘脑和垂体中昼夜节律和时间间隔计时器的作用和机制。

Clocks for all seasons: unwinding the roles and mechanisms of circadian and interval timers in the hypothalamus and pituitary.

机构信息

Faculty of Life SciencesUniversity of Manchester, Manchester M13 9PT, UK.

Faculty of Life SciencesUniversity of Manchester, Manchester M13 9PT, UK

出版信息

J Endocrinol. 2014 Aug;222(2):R39-59. doi: 10.1530/JOE-14-0141. Epub 2014 Jun 2.

Abstract

Adaptation to the environment is essential for survival, in all wild animal species seasonal variation in temperature and food availability needs to be anticipated. This has led to the evolution of deep-rooted physiological cycles, driven by internal clocks, which can track seasonal time with remarkable precision. Evidence has now accumulated that a seasonal change in thyroid hormone (TH) availability within the brain is a crucial element. This is mediated by local control of TH-metabolising enzymes within specialised ependymal cells lining the third ventricle of the hypothalamus. Within these cells, deiodinase type 2 enzyme is activated in response to summer day lengths, converting metabolically inactive thyroxine (T4) to tri-iodothyronine (T3). The availability of TH in the hypothalamus appears to be an important factor in driving the physiological changes that occur with season. Remarkably, in both birds and mammals, the pars tuberalis (PT) of the pituitary gland plays an essential role. A specialised endocrine thyrotroph cell (TSH-expressing) is regulated by the changing day-length signal, leading to activation of TSH by long days. This acts on adjacent TSH-receptors expressed in the hypothalamic ependymal cells, causing local regulation of deiodinase enzymes and conversion of TH to the metabolically active T3. In mammals, the PT is regulated by the nocturnal melatonin signal. Summer-like melatonin signals activate a PT-expressed clock-regulated transcription regulator (EYA3), which in turn drives the expression of the TSHβ sub-unit, leading to a sustained increase in TSH expression. In this manner, a local pituitary timer, driven by melatonin, initiates a cascade of molecular events, led by EYA3, which translates to seasonal changes of neuroendocrine activity in the hypothalamus. There are remarkable parallels between this PT circuit and the photoperiodic timing system used in plants, and while plants use different molecular signals (constans vs EYA3) it appears that widely divergent organisms probably obey a common set of design principles.

摘要

适应环境对于所有野生动物物种的生存都是至关重要的,它们需要预测温度和食物供应的季节性变化。这导致了根深蒂固的生理周期的进化,这些周期由内部时钟驱动,可以非常精确地跟踪季节性时间。现在有证据表明,大脑中甲状腺激素(TH)供应的季节性变化是一个关键因素。这是通过下丘脑第三脑室衬里的专门室管膜细胞内 TH 代谢酶的局部控制来实现的。在这些细胞中,脱碘酶 2 型酶在夏季日照时间的作用下被激活,将代谢不活跃的甲状腺素(T4)转化为三碘甲状腺原氨酸(T3)。下丘脑 TH 的可用性似乎是驱动与季节相关的生理变化的重要因素。值得注意的是,在鸟类和哺乳动物中,垂体的垂体柄(PT)都起着至关重要的作用。一种特殊的内分泌促甲状腺激素细胞(表达 TSH)受不断变化的日长信号调节,导致长日照时 TSH 的激活。这作用于下丘脑室管膜细胞中表达的相邻 TSH 受体,导致局部调节脱碘酶酶和 TH 向代谢活跃的 T3 的转化。在哺乳动物中,PT 受夜间褪黑素信号的调节。类似夏季的褪黑素信号激活了一个在 PT 中表达的时钟调节转录调节因子(EYA3),它反过来又驱动 TSHβ亚基的表达,导致 TSH 表达的持续增加。通过这种方式,由褪黑素驱动的局部垂体定时器启动了一系列分子事件,由 EYA3 领导,这些事件转化为下丘脑神经内分泌活动的季节性变化。PT 电路与植物中使用的光周期计时系统之间存在显著的相似之处,虽然植物使用不同的分子信号(CONSTANS 与 EYA3),但似乎广泛不同的生物可能遵循一套共同的设计原则。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adb0/4104039/cd7bee2595b7/JOE140141f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验