Institute of Computer Science, Academy of Sciences of the Czech Republic, Pod Vodárenskou věží 2, 182 07 Prague, Czech Republic.
Department of Mathematics and Statistics, Georgetown University, 3700 Reservoir Rd., N.W., Washington, DC 20057, USA.
Neural Netw. 2014 Sep;57:23-8. doi: 10.1016/j.neunet.2014.05.005. Epub 2014 May 20.
The role of width of Gaussians in two types of computational models is investigated: Gaussian radial-basis-functions (RBFs) where both widths and centers vary and Gaussian kernel networks which have fixed widths but varying centers. The effect of width on functional equivalence, universal approximation property, and form of norms in reproducing kernel Hilbert spaces (RKHS) is explored. It is proven that if two Gaussian RBF networks have the same input-output functions, then they must have the same numbers of units with the same centers and widths. Further, it is shown that while sets of input-output functions of Gaussian kernel networks with two different widths are disjoint, each such set is large enough to be a universal approximator. Embedding of RKHSs induced by "flatter" Gaussians into RKHSs induced by "sharper" Gaussians is described and growth of the ratios of norms on these spaces with increasing input dimension is estimated. Finally, large sets of argminima of error functionals in sets of input-output functions of Gaussian RBFs are described.
高斯径向基函数(RBF),其中宽度和中心都在变化,以及具有固定宽度但中心变化的高斯核网络。研究了宽度对功能等价、通用逼近特性和再生核希尔伯特空间(RKHS)中范数形式的影响。证明了如果两个高斯 RBF 网络具有相同的输入-输出函数,则它们必须具有相同数量的具有相同中心和宽度的单元。此外,表明具有两个不同宽度的高斯核网络的输入-输出函数集是不相交的,而每个这样的集都足够大,可以作为通用逼近器。描述了由“更平坦”的高斯诱导的 RKHS 嵌入到由“更陡峭”的高斯诱导的 RKHS 中,并估计了这些空间上的范数比随输入维度增加的增长情况。最后,描述了高斯 RBF 输入-输出函数集中误差泛函的极大值点的大集合。