IEEE Trans Med Imaging. 2014 Jun;33(6):1290-303. doi: 10.1109/TMI.2014.2308901.
Accurate segmentation of the prostate in computed tomography (CT) images is important in image-guided radiotherapy; however, difficulties remain associated with this task. In this study, an automatic framework is designed for prostate segmentation in CT images. We propose a novel image feature extraction method, namely, variant scale patch, which can provide rich image information in a low dimensional feature space. We assume that the samples from different classes lie on different nonlinear submanifolds and design a new segmentation criterion called local independent projection (LIP). In our method, a dictionary containing training samples is constructed. To utilize the latest image information, we use an online updated strategy to construct this dictionary. In the proposed LIP, locality is emphasized rather than sparsity; local anchor embedding is performed to determine the dictionary coefficients. Several morphological operations are performed to improve the achieved results. The proposed method has been evaluated based on 330 3-D images of 24 patients. Results show that the proposed method is robust and effective in segmenting prostate in CT images.
在图像引导放疗中,准确分割 CT 图像中的前列腺是非常重要的;然而,这项任务仍然存在困难。在这项研究中,我们设计了一个用于 CT 图像中前列腺分割的自动框架。我们提出了一种新的图像特征提取方法,即变尺度补丁,它可以在低维特征空间中提供丰富的图像信息。我们假设来自不同类别的样本位于不同的非线性子流形上,并设计了一种新的分割准则,称为局部独立投影(LIP)。在我们的方法中,构建了一个包含训练样本的字典。为了利用最新的图像信息,我们使用在线更新策略来构建这个字典。在提出的 LIP 中,强调的是局部性而不是稀疏性;通过局部锚嵌入来确定字典系数。进行了一些形态学操作来提高所得到的结果。该方法已经在 24 名患者的 330 个 3D 图像上进行了评估。结果表明,该方法在 CT 图像中分割前列腺是稳健和有效的。