Suppr超能文献

利用深度学习和多图谱融合技术在CT图像上自动分割前列腺。

Automatic segmentation of the prostate on CT images using deep learning and multi-atlas fusion.

作者信息

Ma Ling, Guo Rongrong, Zhang Guoyi, Tade Funmilayo, Schuster David M, Nieh Peter, Master Viraj, Fei Baowei

机构信息

Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA.

School of Computer Science, Beijing Institute of Technology.

出版信息

Proc SPIE Int Soc Opt Eng. 2017 Feb;10133. doi: 10.1117/12.2255755. Epub 2017 Feb 24.

Abstract

Automatic segmentation of the prostate on CT images has many applications in prostate cancer diagnosis and therapy. However, prostate CT image segmentation is challenging because of the low contrast of soft tissue on CT images. In this paper, we propose an automatic segmentation method by combining a deep learning method and multi-atlas refinement. First, instead of segmenting the whole image, we extract the region of interesting (ROI) to delete irrelevant regions. Then, we use the convolutional neural networks (CNN) to learn the deep features for distinguishing the prostate pixels from the non-prostate pixels in order to obtain the preliminary segmentation results. CNN can automatically learn the deep features adapting to the data, which are different from some handcrafted features. Finally, we select some similar atlases to refine the initial segmentation results. The proposed method has been evaluated on a dataset of 92 prostate CT images. Experimental results show that our method achieved a Dice similarity coefficient of 86.80% as compared to the manual segmentation. The deep learning based method can provide a useful tool for automatic segmentation of the prostate on CT images and thus can have a variety of clinical applications.

摘要

CT图像上前列腺的自动分割在前列腺癌的诊断和治疗中有许多应用。然而,由于CT图像上软组织对比度低,前列腺CT图像分割具有挑战性。在本文中,我们提出了一种结合深度学习方法和多图谱细化的自动分割方法。首先,我们不是分割整个图像,而是提取感兴趣区域(ROI)以删除无关区域。然后,我们使用卷积神经网络(CNN)学习深度特征,以区分前列腺像素和非前列腺像素,从而获得初步分割结果。CNN可以自动学习适应数据的深度特征,这与一些手工制作的特征不同。最后,我们选择一些相似的图谱来细化初始分割结果。所提出的方法已在一个包含92幅前列腺CT图像的数据集上进行了评估。实验结果表明,与手动分割相比,我们的方法获得了86.80%的骰子相似系数。基于深度学习的方法可为CT图像上前列腺的自动分割提供有用工具,从而具有多种临床应用。

相似文献

1
Automatic segmentation of the prostate on CT images using deep learning and multi-atlas fusion.
Proc SPIE Int Soc Opt Eng. 2017 Feb;10133. doi: 10.1117/12.2255755. Epub 2017 Feb 24.
4
Automatic Segmentation of Multiple Organs on 3D CT Images by Using Deep Learning Approaches.
Adv Exp Med Biol. 2020;1213:135-147. doi: 10.1007/978-3-030-33128-3_9.
5
An efficient brain tumor image classifier by combining multi-pathway cascaded deep neural network and handcrafted features in MR images.
Med Biol Eng Comput. 2021 Aug;59(7-8):1495-1527. doi: 10.1007/s11517-021-02370-6. Epub 2021 Jun 29.
6
A combined learning algorithm for prostate segmentation on 3D CT images.
Med Phys. 2017 Nov;44(11):5768-5781. doi: 10.1002/mp.12528. Epub 2017 Sep 22.
7
Automatic bladder segmentation from CT images using deep CNN and 3D fully connected CRF-RNN.
Int J Comput Assist Radiol Surg. 2018 Jul;13(7):967-975. doi: 10.1007/s11548-018-1733-7. Epub 2018 Mar 19.
8
Deep learning-based three-dimensional segmentation of the prostate on computed tomography images.
J Med Imaging (Bellingham). 2019 Apr;6(2):025003. doi: 10.1117/1.JMI.6.2.025003. Epub 2019 May 3.
9
Postoperative glioma segmentation in CT image using deep feature fusion model guided by multi-sequence MRIs.
Eur Radiol. 2020 Feb;30(2):823-832. doi: 10.1007/s00330-019-06441-z. Epub 2019 Oct 24.

引用本文的文献

2
Prior guided deep difference meta-learner for fast adaptation to stylized segmentation.
Mach Learn Sci Technol. 2025 Jun 30;6(2):025016. doi: 10.1088/2632-2153/adc970. Epub 2025 Apr 16.
4
Deep learning based automatic segmentation of the Internal Pudendal Artery in definitive radiotherapy treatment planning of localized prostate cancer.
Phys Imaging Radiat Oncol. 2024 Apr 15;30:100577. doi: 10.1016/j.phro.2024.100577. eCollection 2024 Apr.
5
Deep learning algorithm performs similarly to radiologists in the assessment of prostate volume on MRI.
Eur Radiol. 2023 Apr;33(4):2519-2528. doi: 10.1007/s00330-022-09239-8. Epub 2022 Nov 12.
7
Automatic Segmentation of the Prostate on MR Images based on Anatomy and Deep Learning.
Proc SPIE Int Soc Opt Eng. 2021 Feb;11598. doi: 10.1117/12.2581893. Epub 2021 Feb 15.
8
Clinical validation of an automatic atlas-based segmentation tool for male pelvis CT images.
J Appl Clin Med Phys. 2022 Mar;23(3):e13507. doi: 10.1002/acm2.13507. Epub 2022 Jan 22.
9
Automatic Segmentation of Pelvic Cancers Using Deep Learning: State-of-the-Art Approaches and Challenges.
Diagnostics (Basel). 2021 Oct 22;11(11):1964. doi: 10.3390/diagnostics11111964.
10
Robustness study of noisy annotation in deep learning based medical image segmentation.
Phys Med Biol. 2020 Aug 27;65(17):175007. doi: 10.1088/1361-6560/ab99e5.

本文引用的文献

1
Combining Population and Patient-Specific Characteristics for Prostate Segmentation on 3D CT Images.
Proc SPIE Int Soc Opt Eng. 2016 Feb 27;9784. doi: 10.1117/12.2216255. Epub 2016 Mar 21.
2
Cancer statistics, 2016.
CA Cancer J Clin. 2016 Jan-Feb;66(1):7-30. doi: 10.3322/caac.21332. Epub 2016 Jan 7.
3
Deformable MR Prostate Segmentation via Deep Feature Learning and Sparse Patch Matching.
IEEE Trans Med Imaging. 2016 Apr;35(4):1077-89. doi: 10.1109/TMI.2015.2508280. Epub 2015 Dec 11.
5
Prostate segmentation based on variant scale patch and local independent projection.
IEEE Trans Med Imaging. 2014 Jun;33(6):1290-303. doi: 10.1109/TMI.2014.2308901.
6
Segmentation of pelvic structures for planning CT using a geometrical shape model tuned by a multi-scale edge detector.
Phys Med Biol. 2014 Mar 21;59(6):1471-84. doi: 10.1088/0031-9155/59/6/1471. Epub 2014 Mar 5.
7
Prostate Segmentation in CT Images via Spatial-Constrained Transductive Lasso.
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2013. doi: 10.1109/CVPR.2013.289.
10
3D ultrasound image segmentation using wavelet support vector machines.
Med Phys. 2012 Jun;39(6):2972-84. doi: 10.1118/1.4709607.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验