Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China.
School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China.
Sci Rep. 2017 Apr 3;7:45501. doi: 10.1038/srep45501.
We propose local linear mapping (LLM), a novel fusion framework for distance field (DF) to perform automatic hippocampus segmentation. A k-means cluster method is propose for constructing magnetic resonance (MR) and DF dictionaries. In LLM, we assume that the MR and DF samples are located on two nonlinear manifolds and the mapping from the MR manifold to the DF manifold is differentiable and locally linear. We combine the MR dictionary using local linear representation to present the test sample, and combine the DF dictionary using the corresponding coefficients derived from local linear representation procedure to predict the DF of the test sample. We then merge the overlapped predicted DF patch to obtain the DF value of each point in the test image via a confidence-based weighted average method. This approach enabled us to estimate the label of the test image according to the predicted DF. The proposed method was evaluated on brain images of 35 subjects obtained from SATA dataset. Results indicate the effectiveness of the proposed method, which yields mean Dice similarity coefficients of 0.8697, 0.8770 and 0.8734 for the left, right and bi-lateral hippocampus, respectively.
我们提出了局部线性映射(LLM),这是一种新的距离场(DF)融合框架,用于执行自动海马体分割。提出了一种 k-均值聚类方法来构建磁共振(MR)和 DF 字典。在 LLM 中,我们假设 MR 和 DF 样本位于两个非线性流形上,并且从 MR 流形到 DF 流形的映射是可微的和局部线性的。我们使用局部线性表示组合 MR 字典来表示测试样本,使用局部线性表示过程中得出的对应系数组合 DF 字典来预测测试样本的 DF。然后,我们通过基于置信度的加权平均方法合并重叠的预测 DF 补丁,以获得测试图像中每个点的 DF 值。这种方法使我们能够根据预测的 DF 来估计测试图像的标签。该方法在 SATA 数据集的 35 个受试者的脑图像上进行了评估。结果表明,该方法的有效性,其在左、右和双侧海马体的平均 Dice 相似系数分别为 0.8697、0.8770 和 0.8734。