Suppr超能文献

使用潜在变量间接响应模型对临床终点进行暴露-反应建模。

Exposure-response modeling of clinical end points using latent variable indirect response models.

机构信息

Janssen Research & Development, LLC, Spring House, Pennsylvania, USA.

出版信息

CPT Pharmacometrics Syst Pharmacol. 2014 Jun 4;3(6):e117. doi: 10.1038/psp.2014.15.

Abstract

Exposure-response modeling facilitates effective dosing regimen selection in clinical drug development, where the end points are often disease scores and not physiological variables. Appropriate models need to be consistent with pharmacology and identifiable from the time courses of available data. This article describes a general framework of applying mechanism-based models to various types of clinical end points. Placebo and drug model parameterization, interpretation, and assessment are discussed with a focus on the indirect response models.

摘要

暴露-反应建模有助于在临床药物开发中选择有效的给药方案,其中终点通常是疾病评分,而不是生理变量。适当的模型需要与药理学一致,并能够从现有数据的时间过程中识别出来。本文描述了一种将基于机制的模型应用于各种类型的临床终点的通用框架。讨论了安慰剂和药物模型的参数化、解释和评估,重点是间接反应模型。

相似文献

引用本文的文献

1
Visual predictive check of longitudinal models and dropout.纵向模型和缺失值的可视化预测检查。
J Pharmacokinet Pharmacodyn. 2024 Dec;51(6):859-875. doi: 10.1007/s10928-024-09937-4. Epub 2024 Aug 18.
2
Role of Disease Progression Models in Drug Development.疾病进展模型在药物研发中的作用。
Pharm Res. 2022 Aug;39(8):1803-1815. doi: 10.1007/s11095-022-03257-3. Epub 2022 Apr 11.

本文引用的文献

3
The trend odds model for ordinal data.有序数据的趋势优势比模型。
Stat Med. 2013 Jun 15;32(13):2250-61. doi: 10.1002/sim.5689. Epub 2012 Dec 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验