Department of Biostatistics, University of Iowa College of Public Health, Iowa City, IA 52240, USA.
Stat Med. 2013 Jun 15;32(13):2250-61. doi: 10.1002/sim.5689. Epub 2012 Dec 6.
Ordinal data appear in a wide variety of scientific fields. These data are often analyzed using ordinal logistic regression models that assume proportional odds. When this assumption is not met, it may be possible to capture the lack of proportionality using a constrained structural relationship between the odds and the cut-points of the ordinal values. We consider a trend odds version of this constrained model, wherein the odds parameter increases or decreases in a monotonic manner across the cut-points. We demonstrate algebraically and graphically how this model is related to latent logistic, normal, and exponential distributions. In particular, we find that scale changes in these potential latent distributions are consistent with the trend odds assumption, with the logistic and exponential distributions having odds that increase in a linear or nearly linear fashion. We show how to fit this model using SAS Proc NLMIXED and perform simulations under proportional odds and trend odds processes. We find that the added complexity of the trend odds model gives improved power over the proportional odds model when there are moderate to severe departures from proportionality. A hypothetical data set is used to illustrate the interpretation of the trend odds model, and we apply this model to a swine influenza example wherein the proportional odds assumption appears to be violated.
有序数据出现在各种科学领域中。这些数据通常使用假设比例优势的有序逻辑回归模型进行分析。当这个假设不成立时,可能可以通过在有序值的切点之间建立一个受限的结构关系来捕捉缺乏比例性。我们考虑了这种受限模型的趋势优势版本,其中优势参数在切点处单调增加或减少。我们从代数和图形上展示了这个模型与潜在的逻辑、正态和指数分布的关系。特别是,我们发现这些潜在分布的比例变化与趋势优势假设一致,逻辑和指数分布的优势以线性或近乎线性的方式增加。我们展示了如何使用 SAS Proc NLMIXED 拟合这个模型,并在比例优势和趋势优势过程下进行模拟。我们发现,当偏离比例性达到中度到重度时,趋势优势模型的复杂性增加会提高相对于比例优势模型的功效。使用一个假设的数据集中说明了趋势优势模型的解释,并将该模型应用于一个猪流感的例子中,其中似乎违反了比例优势假设。