Suppr超能文献

利用支持向量机和Pfam结构域信息进行蛋白质亚核定位预测。

Protein sub-nuclear localization prediction using SVM and Pfam domain information.

作者信息

Kumar Ravindra, Jain Sohni, Kumari Bandana, Kumar Manish

机构信息

Department of Biophysics, University of Delhi South Campus, New Delhi, India.

出版信息

PLoS One. 2014 Jun 4;9(6):e98345. doi: 10.1371/journal.pone.0098345. eCollection 2014.

Abstract

The nucleus is the largest and the highly organized organelle of eukaryotic cells. Within nucleus exist a number of pseudo-compartments, which are not separated by any membrane, yet each of them contains only a specific set of proteins. Understanding protein sub-nuclear localization can hence be an important step towards understanding biological functions of the nucleus. Here we have described a method, SubNucPred developed by us for predicting the sub-nuclear localization of proteins. This method predicts protein localization for 10 different sub-nuclear locations sequentially by combining presence or absence of unique Pfam domain and amino acid composition based SVM model. The prediction accuracy during leave-one-out cross-validation for centromeric proteins was 85.05%, for chromosomal proteins 76.85%, for nuclear speckle proteins 81.27%, for nucleolar proteins 81.79%, for nuclear envelope proteins 79.37%, for nuclear matrix proteins 77.78%, for nucleoplasm proteins 76.98%, for nuclear pore complex proteins 88.89%, for PML body proteins 75.40% and for telomeric proteins it was 83.33%. Comparison with other reported methods showed that SubNucPred performs better than existing methods. A web-server for predicting protein sub-nuclear localization named SubNucPred has been established at http://14.139.227.92/mkumar/subnucpred/. Standalone version of SubNucPred can also be downloaded from the web-server.

摘要

细胞核是真核细胞中最大且高度有组织的细胞器。细胞核内存在许多假隔室,它们没有被任何膜分隔,但每个假隔室仅包含一组特定的蛋白质。因此,了解蛋白质的亚核定位可能是迈向理解细胞核生物学功能的重要一步。在此,我们描述了一种由我们开发的名为SubNucPred的预测蛋白质亚核定位的方法。该方法通过结合独特的Pfam结构域的有无以及基于氨基酸组成的支持向量机模型,依次预测10种不同亚核位置的蛋白质定位。在留一法交叉验证中,着丝粒蛋白的预测准确率为85.05%,染色体蛋白为76.85%,核斑点蛋白为81.27%,核仁蛋白为81.79%,核膜蛋白为79.37%,核基质蛋白为77.78%,核质蛋白为76.98%,核孔复合体蛋白为88.89%,PML体蛋白为75.40%,端粒蛋白为83.33%。与其他已报道方法的比较表明,SubNucPred的性能优于现有方法。一个名为SubNucPred的用于预测蛋白质亚核定位的网络服务器已在http://14.139.227.92/mkumar/subnucpred/上建立。SubNucPred的独立版本也可从该网络服务器下载。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be05/4045734/3b0d9804a47c/pone.0098345.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验