Inserm, CépiDc (Epidemiology center on medical causes of death), CHU Bicêtre, 80 rue du Général Leclerc, Kremlin Bicêtre, CEDEX 94270, France.
BMC Med Inform Decis Mak. 2014 Jun 5;14:44. doi: 10.1186/1472-6947-14-44.
In the age of big data in healthcare, automated comparison of medical diagnoses in large scale databases is a key issue. Our objectives were: 1) to formally define and identify cases of independence between last hospitalization main diagnosis (MD) and death registry underlying cause of death (UCD) for deceased subjects hospitalized in their last year of life; 2) to study their distribution according to socio-demographic and medico-administrative variables; 3) to discuss the interest of this method in the specific context of hospital quality of care assessment.
Our algorithm can identify cases where death can be considered independent from the pathology treated in hospital. Excluding these deaths from the ones allocated to the hospitalization process could contribute to improve post-hospital mortality indicators. More generally, this method has the potential of being developed and used for other diagnoses comparisons across time periods or databases.
在医疗保健的大数据时代,对大型数据库中的医疗诊断进行自动比较是一个关键问题。我们的目标是:1)正式定义并识别在生命最后一年住院的已故患者中,上次住院的主要诊断(MD)与死亡登记处的根本死因(UCD)之间的独立性病例;2)根据社会人口学和医疗管理变量研究其分布;3)讨论在医院质量评估的特定背景下,这种方法的意义。
1)根据依赖于国际标准的编码系统 Iris,制定一种比较 MD 和 UCD 的算法。2)将其应用于 2008-2009 年住院和死亡的 421,460 名普通健康保险计划(覆盖 70%的法国人口)的被保险人。
1)独立性被定义为 MD 和 UCD 属于导致死亡的不同事件序列。2)在自动分析的死亡中(91.7%),91.7%的院内死亡和 19.5%的院外死亡被归类为独立。独立性在老年患者中更为常见,出院-死亡时间间隔延长时也是如此(出院后 30 天内死亡的比例为 14.3%,6-12 个月内死亡的比例为 27.7%),且 UCD 为肿瘤以外的其他疾病时也是如此。
我们的算法可以识别可以认为与医院治疗的病理学无关的死亡病例。将这些死亡病例从分配给住院过程的死亡病例中排除,可能有助于提高住院后死亡率指标。更一般地说,这种方法有可能被开发并用于在不同时间段或数据库中比较其他诊断。