Yin Hao, Du Jianchang, Li Leiting, Jin Cong, Fan Lian, Li Meng, Wu Jun, Zhang Shaoling
State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, China.
Bioinformatics Group, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China.
Genome Biol Evol. 2014 Jun 4;6(6):1423-36. doi: 10.1093/gbe/evu114.
Cassandra transposable elements belong to a specific group of terminal-repeat retrotransposons in miniature (TRIM). Although Cassandra TRIM elements have been found in almost all vascular plants, detailed investigations on the nature, abundance, amplification timeframe, and evolution have not been performed in an individual genome. We therefore conducted a comprehensive analysis of Cassandra retrotransposons using the newly sequenced pear genome along with four other Rosaceae species, including apple, peach, mei, and woodland strawberry. Our data reveal several interesting findings for this particular retrotransposon family: 1) A large number of the intact copies contain three, four, or five long terminal repeats (LTRs) (∼20% in pear); 2) intact copies and solo LTRs with or without target site duplications are both common (∼80% vs. 20%) in each genome; 3) the elements exhibit an overall unbiased distribution among the chromosomes; 4) the elements are most successfully amplified in pear (5,032 copies); and 5) the evolutionary relationships of these elements vary among different lineages, species, and evolutionary time. These results indicate that Cassandra retrotransposons contain more complex structures (elements with multiple LTRs) than what we have known previously, and that frequent interelement unequal recombination followed by transposition may play a critical role in shaping and reshaping host genomes. Thus this study provides insights into the property, propensity, and molecular mechanisms governing the formation and amplification of Cassandra retrotransposons, and enhances our understanding of the structural variation, evolutionary history, and transposition process of LTR retrotransposons in plants.
卡珊德拉转座元件属于微型末端重复反转录转座子(TRIM)的一个特定类别。尽管在几乎所有维管植物中都发现了卡珊德拉TRIM元件,但尚未在单个基因组中对其性质、丰度、扩增时间框架和进化进行详细研究。因此,我们利用新测序的梨基因组以及其他四个蔷薇科物种,包括苹果、桃、梅和森林草莓,对卡珊德拉反转录转座子进行了全面分析。我们的数据揭示了这个特定反转录转座子家族的几个有趣发现:1)大量完整拷贝包含三个、四个或五个长末端重复序列(LTR)(梨中约占20%);2)在每个基因组中,有或没有靶位点重复的完整拷贝和单独LTR都很常见(约80%对20%);3)这些元件在染色体间呈现总体无偏向分布;4)这些元件在梨中扩增最为成功(5032个拷贝);5)这些元件的进化关系在不同谱系、物种和进化时间中有所不同。这些结果表明,卡珊德拉反转录转座子包含比我们之前所知更复杂的结构(具有多个LTR的元件),并且频繁的元件间不等位重组随后的转座可能在塑造和重塑宿主基因组中起关键作用。因此,本研究为卡珊德拉反转录转座子的形成和扩增的性质、倾向和分子机制提供了见解,并增强了我们对植物中LTR反转录转座子的结构变异、进化历史和转座过程的理解。