Milletti Francesca, Hermann Johannes C
pRED Informatics, Roche , 340 Kingsland Street, Nutley, New Jersey 07110, United States.
Discovery Chemistry, Roche , 340 Kingsland Street, Nutley, New Jersey 07110, United States.
ACS Med Chem Lett. 2012 Mar 14;3(5):383-6. doi: 10.1021/ml300012r. eCollection 2012 May 10.
Kinase selectivity plays a major role in the design strategy of lead series and in the ultimate success of kinase drug discovery programs. Although profiling compounds against a large panel of protein kinases has become a standard part of modern drug discovery, data accumulated from these kinase panels may be underutilized for new kinase projects. We present a method that can be used to optimize the selectivity profile of a compound using historical kinase profiling data. This method proposes chemical transformations based on pairs of very similar compounds, which are both active against a desired target kinase and differ in activity against another kinase. We show that these transformations are transferable across scaffolds, thus making this tool valuable to exploit kinase profiling data for unrelated series of compounds.
激酶选择性在先导化合物系列的设计策略以及激酶药物发现项目的最终成功中起着重要作用。尽管针对大量蛋白激酶对化合物进行分析已成为现代药物发现的标准环节,但从这些激酶分析中积累的数据在新的激酶项目中可能未得到充分利用。我们提出了一种方法,可利用历史激酶分析数据来优化化合物的选择性谱。该方法基于一对非常相似的化合物提出化学转化,这两种化合物对所需的目标激酶均有活性,但对另一种激酶的活性不同。我们表明,这些转化可跨支架转移,从而使该工具对于利用不相关化合物系列的激酶分析数据具有重要价值。