Suppr超能文献

二元数据单变量和双变量荟萃分析中异质性量化的统计学方法:诊断准确性荟萃分析的案例

Statistics for quantifying heterogeneity in univariate and bivariate meta-analyses of binary data: the case of meta-analyses of diagnostic accuracy.

作者信息

Zhou Yan, Dendukuri Nandini

机构信息

Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada.

出版信息

Stat Med. 2014 Jul 20;33(16):2701-17. doi: 10.1002/sim.6115. Epub 2014 Feb 19.

Abstract

Heterogeneity in diagnostic meta-analyses is common because of the observational nature of diagnostic studies and the lack of standardization in the positivity criterion (cut-off value) for some tests. So far the unexplained heterogeneity across studies has been quantified by either using the I(2) statistic for a single parameter (i.e. either the sensitivity or the specificity) or visually examining the data in a receiver-operating characteristic space. In this paper, we derive improved I(2) statistics measuring heterogeneity for dichotomous outcomes, with a focus on diagnostic tests. We show that the currently used estimate of the 'typical' within-study variance proposed by Higgins and Thompson is not able to properly account for the variability of the within-study variance across studies for dichotomous variables. Therefore, when the between-study variance is large, the 'typical' within-study variance underestimates the expected within-study variance, and the corresponding I(2) is overestimated. We propose to use the expected value of the within-study variation in the construction of I(2) in cases of univariate and bivariate diagnostic meta-analyses. For bivariate diagnostic meta-analyses, we derive a bivariate version of I(2) that is able to account for the correlation between sensitivity and specificity. We illustrate the performance of these new estimators using simulated data as well as two real data sets.

摘要

由于诊断性研究的观察性本质以及某些检测中阳性标准(临界值)缺乏标准化,诊断性荟萃分析中的异质性很常见。到目前为止,跨研究中无法解释的异质性要么通过对单个参数(即灵敏度或特异度)使用I²统计量来量化,要么通过在受试者工作特征空间中直观检查数据来量化。在本文中,我们推导了用于测量二分结果异质性的改进I²统计量,重点是诊断性检测。我们表明,Higgins和Thompson提出的当前使用的“典型”研究内方差估计值,无法正确解释二分变量在各研究中的研究内方差变异性。因此,当研究间方差较大时,“典型”研究内方差会低估预期的研究内方差,相应的I²会被高估。对于单变量和双变量诊断性荟萃分析,我们建议在构建I²时使用研究内变异的期望值。对于双变量诊断性荟萃分析,我们推导了一个能够考虑灵敏度和特异度之间相关性的双变量I²版本。我们使用模拟数据以及两个真实数据集说明了这些新估计量的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验