Barbosa Lucas M, Mazetto Roberto, Defante Maria L R, Antunes Vânio L J, Oliveira Vinicius Martins Rodrigues, Cavalcante Douglas, Feitoza Luanna Paula Garcez de Carvalho, Queiroz Ivo, Ferreira André Luiz Carvalho, Almeida Guilherme, Bulhões Elísio, Nunes Maria do Carmo P, Scanavacca Mauricio Ibrahim, Darrieux Francisco, Brugada Josep
Medicine Department, Federal University of Minas Gerais, Rua Alfredo Balena, Belo Horizonte, 190, Brazil.
Medicine Department, Amazonas State University, Manaus, Brazil.
J Interv Card Electrophysiol. 2025 Jun 4. doi: 10.1007/s10840-025-02075-y.
Brugada syndrome (BrS) is a serious condition linked to sudden cardiac death in individuals who are otherwise healthy. Notably, drug-induced BrS accounts for 50% to 70% of all documented cases. The utilization of artificial intelligence (AI) models in the analysis of electrocardiograms (ECGs) represents a promising approach for the detection of BrS.
This meta-analysis aims to evaluate the effectiveness of AI models in diagnosing BrS through ECG analysis.
We conducted a systematic search across PubMed, Embase, and Cochrane databases, focusing on AI-based models for ECG analysis related to BrS detection. Key outcomes measured included sensitivity, specificity, and the summary receiver operating characteristic (SROC) curve. Pooled proportions were calculated using a random-effects model with 95% confidence intervals (CIs), and heterogeneity was using Zhou and Dendukuri I approach. Additionally, a leave-one-out sensitivity analysis was performed to evaluate the impact of each one of the included studies on the pooled results and heterogeneity. All statistical analyses were conducted using R version 4.4.2.
Our analysis included six studies encompassing ECG data from 2,179 patients, all employing AI algorithms for ECG interpretation. The quantitative analysis revealed an area under the curve (AUC) of 0.898, a sensitivity of 78.9% (95% CI: 69.6 to 85.9), and a specificity of 87.7% (95% CI: 79.9 to 92.7). Notably, the sensitivity analysis without Zanchi et al., significantly reduced the heterogeneity (I = 0%). However, the other analyses corroborated with our general findings.
AI-driven ECG interpretation demonstrates to be a viable option in detecting BrS.
Brugada综合征(BrS)是一种与健康个体心源性猝死相关的严重疾病。值得注意的是,药物诱发的BrS占所有已记录病例的50%至70%。利用人工智能(AI)模型分析心电图(ECG)是检测BrS的一种有前景的方法。
本荟萃分析旨在评估AI模型通过心电图分析诊断BrS的有效性。
我们在PubMed、Embase和Cochrane数据库中进行了系统检索,重点关注基于AI的用于与BrS检测相关的心电图分析模型。测量的主要结果包括敏感性、特异性和汇总接收器操作特征(SROC)曲线。使用随机效应模型计算合并比例,并给出95%置信区间(CI),异质性采用Zhou和Dendukuri I方法。此外,进行了留一法敏感性分析,以评估纳入的每项研究对合并结果和异质性的影响。所有统计分析均使用R 4.4.2版本进行。
我们的分析纳入了6项研究,涵盖2179例患者的心电图数据,所有研究均采用AI算法进行心电图解读。定量分析显示曲线下面积(AUC)为0.898,敏感性为78.9%(95%CI:69.6至85.9),特异性为87.7%(95%CI:79.9至92.7)。值得注意的是,排除Zanchi等人的研究后的敏感性分析显著降低了异质性(I=0%)。然而,其他分析与我们的总体发现一致。
人工智能驱动的心电图解读在检测BrS方面证明是一种可行的选择。