Suppr超能文献

非小细胞肺癌中癌基因突变状态的预测:一项系统综述和荟萃分析,特别关注基于人工智能的方法

Prediction of oncogene mutation status in non-small cell lung cancer: a systematic review and meta-analysis with a special focus on artificial intelligence-based methods.

作者信息

Fuster-Matanzo Almudena, Picó-Peris Alfonso, Bellvís-Bataller Fuensanta, Jimenez-Pastor Ana, Weiss Glen J, Martí-Bonmatí Luis, Lázaro Sánchez Antonio, Bazaga David, Banna Giuseppe L, Addeo Alfredo, Camps Carlos, Seijo Luis M, Alberich-Bayarri Ángel

机构信息

Quantitative Imaging Biomarkers in Medicine, Quibim, Valencia, Spain.

Quantitative Imaging Biomarkers in Medicine, Quibim, New York, NY, USA.

出版信息

Eur Radiol. 2025 Sep 8. doi: 10.1007/s00330-025-11962-x.

Abstract

OBJECTIVES

In non-small cell lung cancer (NSCLC), non-invasive alternatives to biopsy-dependent driver mutation analysis are needed. We reviewed the effectiveness of radiomics alone or with clinical data and assessed the performance of artificial intelligence (AI) models in predicting oncogene mutation status.

MATERIALS AND METHODS

A PRISMA-compliant literature review for studies predicting oncogene mutation status in NSCLC patients using radiomics was conducted by a multidisciplinary team. Meta-analyses evaluating the performance of AI-based models developed with CT-derived radiomics features alone or combined with clinical data were performed. A meta-regression to analyze the influence of different predictors was also conducted.

RESULTS

Of 890 studies identified, 124 evaluating models for the prediction of epidermal growth factor-1 (EGFR), anaplastic lymphoma kinase (ALK), and Kirsten rat sarcoma virus (KRAS) mutations were included in the systematic review, of which 51 were meta-analyzed. The AI algorithms' sensitivity/false positive rate (FPR) in predicting mutation status using radiomics-based models was 0.754 (95% CI 0.727-0.780)/0.344 (95% CI 0.308-0.381) for EGFR, 0.754 (95% CI 0.638-0.841)/0.225 (95% CI 0.163-0.302) for ALK and 0.475 (95% CI 0.153-0.820)/0.181 (95% CI 0.054-0.461) for KRAS. A meta-analysis of combined models was possible for EGFR mutation, revealing a sensitivity of 0.806 (95% CI 0.777-0.833) and a FPR of 0.315 (95% CI 0.270-0.364). No statistically significant results were obtained in the meta-regression.

CONCLUSIONS

Radiomics-based models may offer a non-invasive alternative for determining oncogene mutation status in NSCLC. Further research is required to analyze whether clinical data might boost their performance.

KEY POINTS

Question Can imaging-based radiomics and artificial intelligence non-invasively predict oncogene mutation status to improve diagnosis in non-small cell lung cancer (NSCLC)? Findings Radiomics-based models achieved high performance in predicting mutation status in NSCLC; adding clinical data showed limited improvement in predictive performance. Clinical relevance Radiomics and AI tools offer a non-invasive strategy to support molecular profiling in NSCLC. Validation studies addressing clinical and methodological aspects are essential to ensure their reliability and integration into routine clinical practice.

摘要

目的

在非小细胞肺癌(NSCLC)中,需要活检依赖的驱动基因突变分析的非侵入性替代方法。我们回顾了单独使用放射组学或结合临床数据的有效性,并评估了人工智能(AI)模型在预测癌基因突变状态方面的性能。

材料与方法

一个多学科团队对使用放射组学预测NSCLC患者癌基因突变状态的研究进行了符合PRISMA标准的文献综述。对仅使用CT衍生的放射组学特征或结合临床数据开发的基于AI的模型的性能进行了荟萃分析。还进行了荟萃回归分析不同预测因素的影响。

结果

在890项已识别的研究中,124项评估用于预测表皮生长因子-1(EGFR)、间变性淋巴瘤激酶(ALK)和 Kirsten 大鼠肉瘤病毒(KRAS)突变的模型被纳入系统评价,其中51项进行了荟萃分析。使用基于放射组学的模型预测突变状态时,AI算法对EGFR的敏感性/假阳性率(FPR)为0.754(95%CI 0.727 - 0.780)/0.344(95%CI 0.308 - 0.381),对ALK为0.754(95%CI 0.638 - 0.841)/0.225(95%CI 0.163 - 0.302),对KRAS为0.475(95%CI 0.153 - 0.820)/0.181(95%CI 0.054 - 0.461)。对EGFR突变的联合模型进行荟萃分析是可行的,显示敏感性为0.806(95%CI 0.777 - 0.833),FPR为0.315(95%CI 0.270 - 0.364)。荟萃回归未获得统计学显著结果。

结论

基于放射组学的模型可能为确定NSCLC中的癌基因突变状态提供一种非侵入性替代方法。需要进一步研究分析临床数据是否可能提高其性能。

关键点

问题基于影像的放射组学和人工智能能否非侵入性地预测癌基因突变状态以改善非小细胞肺癌(NSCLC)的诊断?发现基于放射组学的模型在预测NSCLC突变状态方面表现出高性能;添加临床数据显示预测性能改善有限。临床相关性放射组学和AI工具提供了一种非侵入性策略来支持NSCLC的分子分析。解决临床和方法学方面的验证研究对于确保其可靠性并整合到常规临床实践中至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验