Rorsman Patrik, Ramracheya Reshma, Rorsman Nils J G, Zhang Quan
Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LJ, UK,
Diabetologia. 2014 Sep;57(9):1749-61. doi: 10.1007/s00125-014-3279-8. Epub 2014 Jun 7.
Closure of ATP-regulated K(+) channels (K(ATP) channels) plays a central role in glucose-stimulated insulin secretion in beta cells. K(ATP) channels are also highly expressed in glucagon-producing alpha cells, where their function remains unresolved. Under hypoglycaemic conditions, K(ATP) channels are open in alpha cells but their activity is low and only ~1% of that in beta cells. Like beta cells, alpha cells respond to hyperglycaemia with K(ATP) channel closure, membrane depolarisation and stimulation of action potential firing. Yet, hyperglycaemia reciprocally regulates glucagon (inhibition) and insulin secretion (stimulation). Here we discuss how this conundrum can be resolved and how reduced K(ATP) channel activity, via membrane depolarisation, paradoxically reduces alpha cell Ca(2+) entry and glucagon exocytosis. Finally, we consider whether the glucagon secretory defects associated with diabetes can be attributed to impaired K(ATP) channel regulation and discuss the potential for remedial pharmacological intervention using sulfonylureas.
ATP调节性钾通道(KATP通道)的关闭在β细胞葡萄糖刺激的胰岛素分泌中起核心作用。KATP通道在产生胰高血糖素的α细胞中也高度表达,但其功能仍未明确。在低血糖条件下,KATP通道在α细胞中开放,但其活性较低,仅为β细胞中活性的约1%。与β细胞一样,α细胞对高血糖的反应是KATP通道关闭、膜去极化和动作电位发放的刺激。然而,高血糖对胰高血糖素(抑制)和胰岛素分泌(刺激)有相反的调节作用。在这里,我们讨论如何解决这一难题,以及KATP通道活性降低如何通过膜去极化反常地减少α细胞Ca2+内流和胰高血糖素胞吐作用。最后,我们考虑与糖尿病相关的胰高血糖素分泌缺陷是否可归因于KATP通道调节受损,并讨论使用磺脲类药物进行补救性药物干预的潜力。