Suppr超能文献

“抵抗是徒劳的?”- 胰高血糖素分泌细胞中 K 通道关闭的矛盾性抑制作用。

'Resistance is futile?' - paradoxical inhibitory effects of K channel closure in glucagon-secreting α-cells.

机构信息

Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford, OX3 7LE, UK.

Metabolic Physiology Unit, Institute of Neuroscience and Physiology, University of Göteborg, PO Box 430, Göteborg, SE-405 30, Sweden.

出版信息

J Physiol. 2020 Nov;598(21):4765-4780. doi: 10.1113/JP279775. Epub 2020 Aug 7.

Abstract

By secreting insulin and glucagon, the β- and α-cells of the pancreatic islets play a central role in the regulation of systemic metabolism. Both cells are equipped with ATP-regulated potassium (K ) channels that are regulated by the intracellular ATP/ADP ratio. In β-cells, K channels are active at low (non-insulin-releasing) glucose concentrations. An increase in glucose leads to K channel closure, membrane depolarization and electrical activity that culminates in elevation of [Ca ] and initiation of exocytosis of the insulin-containing secretory granules. The α-cells are also equipped with K channels but they are under strong tonic inhibition at low glucose, explaining why α-cells are electrically active under hypoglycaemic conditions and generate large Na - and Ca -dependent action potentials. Closure of residual K channel activity leads to membrane depolarization and an increase in action potential firing but this stimulation of electrical activity is associated with inhibition rather than acceleration of glucagon secretion. This paradox arises because membrane depolarization reduces the amplitude of the action potentials by voltage-dependent inactivation of the Na channels involved in action potential generation. Exocytosis in α-cells is tightly linked to the opening of voltage-gated P/Q-type Ca channels, the activation of which is steeply voltage-dependent. Accordingly, the inhibitory effect of the reduced action potential amplitude exceeds the stimulatory effect resulting from the increased action potential frequency. These observations highlight a previously unrecognised role of the action potential amplitude as a key regulator of pancreatic islet hormone secretion.

摘要

胰岛的β-和α-细胞通过分泌胰岛素和胰高血糖素,在调节全身代谢中发挥核心作用。这两种细胞都配备有 ATP 调节性钾 (K ) 通道,其受细胞内 ATP/ADP 比率的调节。在β-细胞中,K 通道在低(非胰岛素释放)葡萄糖浓度下活跃。葡萄糖的增加导致 K 通道关闭,膜去极化和电活动,最终导致[Ca ]升高并启动含胰岛素的分泌颗粒的胞吐作用。α-细胞也配备有 K 通道,但在低血糖下受到强烈的紧张性抑制,这解释了为什么α-细胞在低血糖条件下具有电活性并产生大的 Na -和 Ca -依赖性动作电位。残余 K 通道活性的关闭导致膜去极化和动作电位发射的增加,但这种电活动的刺激与抑制而不是加速胰高血糖素分泌有关。这种矛盾的出现是因为膜去极化通过参与动作电位产生的 Na 通道的电压依赖性失活来减小动作电位的幅度。α-细胞中的胞吐作用与电压门控 P/Q 型 Ca 通道的开放紧密相关,其激活具有陡峭的电压依赖性。因此,减小动作电位幅度的抑制作用超过了由于动作电位频率增加而产生的刺激作用。这些观察结果突出了动作电位幅度作为调节胰岛激素分泌的关键调节剂的先前未被认识的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6857/7689873/7eb3785da513/TJP-598-4765-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验