Birke Jakob, Jendrossek Dieter
Institut für Mikrobiologie, Universität Stuttgart, Stuttgart, Germany.
Institut für Mikrobiologie, Universität Stuttgart, Stuttgart, Germany
Appl Environ Microbiol. 2014 Aug;80(16):5012-20. doi: 10.1128/AEM.01271-14. Epub 2014 Jun 6.
Two types of enzyme for oxidative cleavage of poly(cis-1,4-isoprene) are known. One is rubber oxygenase (RoxA) that is secreted by Xanthomonas sp. strain 35Y and a few other Gram-negative rubber-degrading bacteria during growth on polyisoprene. RoxA was studied in the past, and the recently solved structure showed a structural relationship to bacterial cytochrome c peroxidases (J. Seidel et al., Proc. Natl. Acad. Sci. U. S. A. 110:13833-13838, 2013, http://dx.doi.org/10.1073/pnas.1305560110). The other enzyme is latex-clearing protein (Lcp) that is secreted by rubber-degrading actinomycetes, but Lcp has not yet been purified. Here, we expressed Lcp of Streptomyces sp. strain K30 in a ΔroxA background of Xanthomonas sp. strain 35Y and purified native (untagged) Lcp. The specific activities of Lcp and RoxA were 0.70 and 0.48 U/mg, respectively. Lcp differed from RoxA in the absence of heme groups and other characteristics. Notably, Lcp degraded polyisoprene via endo-type cleavage to tetra-C20 and higher oligo-isoprenoids with aldehyde and keto end groups, whereas RoxA used an exo-type cleavage mechanism to give the main end product 12-oxo-4,8-dimethyltrideca-4,8-diene-1-al (ODTD). RoxA was able to cleave isolated Lcp-derived oligo-isoprenoid molecules to ODTD. Inhibitor studies, spectroscopic investigations and metal analysis gave no indication for the presence of iron, other metals, or cofactors in Lcp. Our results suggest that Lcp could be a member of the growing group of cofactor-independent oxygenases and differs in the cleavage mechanism from heme-dependent RoxA. In conclusion, RoxA and Lcp represent two different answers to the same biochemical problem, the cleavage of polyisoprene, a polymer that has carbon-carbon double bonds as the only functional groups for enzymatic attack.
已知有两种用于氧化裂解聚(顺式-1,4-异戊二烯)的酶。一种是橡胶加氧酶(RoxA),它由黄单胞菌属菌株35Y和其他一些革兰氏阴性橡胶降解细菌在以聚异戊二烯为生长底物时分泌。过去对RoxA进行过研究,最近解析出的结构显示其与细菌细胞色素c过氧化物酶存在结构关系(J. 赛德尔等人,《美国国家科学院院刊》110:13833 - 13838,2013年,http://dx.doi.org/10.1073/pnas.1305560110)。另一种酶是乳胶清除蛋白(Lcp),由橡胶降解放线菌分泌,但Lcp尚未得到纯化。在此,我们在黄单胞菌属菌株35Y的ΔroxA背景中表达了链霉菌属菌株K30的Lcp,并纯化了天然(无标签)Lcp。Lcp和RoxA的比活性分别为0.70和0.48 U/mg。Lcp与RoxA的不同之处在于缺乏血红素基团及其他特征。值得注意的是,Lcp通过内切型裂解将聚异戊二烯降解为四-C20及更高的寡聚异戊二烯类化合物,其末端带有醛基和酮基,而RoxA采用外切型裂解机制,产生主要终产物12-氧代-4,8-二甲基十三碳-4,8-二烯-1-醛(ODTD)。RoxA能够将分离出的源自Lcp的寡聚异戊二烯分子裂解为ODTD。抑制剂研究、光谱研究和金属分析均未表明Lcp中存在铁、其他金属或辅因子。我们的结果表明,Lcp可能是不依赖辅因子的加氧酶这一不断增加的酶类群体中的一员,并且在裂解机制上与依赖血红素的RoxA不同。总之,RoxA和Lcp代表了对同一生化问题的两种不同解决方案,即聚异戊二烯的裂解,聚异戊二烯是一种仅以碳 - 碳双键作为酶促攻击的唯一官能团的聚合物。