Suppr超能文献

秀丽隐杆线虫趋化性回路中感知、记忆和运动的动态编码

Dynamic encoding of perception, memory, and movement in a C. elegans chemotaxis circuit.

作者信息

Luo Linjiao, Wen Quan, Ren Jing, Hendricks Michael, Gershow Marc, Qin Yuqi, Greenwood Joel, Soucy Edward R, Klein Mason, Smith-Parker Heidi K, Calvo Ana C, Colón-Ramos Daniel A, Samuel Aravinthan D T, Zhang Yun

机构信息

Key Laboratory of Modern Acoustics, Ministry of Education, Department of Physics, Nanjing University, China; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA; Department of Physics, Harvard University, Cambridge, MA 02138, USA.

Center for Brain Science, Harvard University, Cambridge, MA 02138, USA; Department of Physics, Harvard University, Cambridge, MA 02138, USA; Department of Neurobiology and Biophysics, School of Life Sciences, University of Science and Technology of China, China.

出版信息

Neuron. 2014 Jun 4;82(5):1115-28. doi: 10.1016/j.neuron.2014.05.010.

Abstract

Brain circuits endow behavioral flexibility. Here, we study circuits encoding flexible chemotaxis in C. elegans, where the animal navigates up or down NaCl gradients (positive or negative chemotaxis) to reach the salt concentration of previous growth (the set point). The ASER sensory neuron mediates positive and negative chemotaxis by regulating the frequency and direction of reorientation movements in response to salt gradients. Both salt gradients and set point memory are encoded in ASER temporal activity patterns. Distinct temporal activity patterns in interneurons immediately downstream of ASER encode chemotactic movement decisions. Different interneuron combinations regulate positive versus negative chemotaxis. We conclude that sensorimotor pathways are segregated immediately after the primary sensory neuron in the chemotaxis circuit, and sensory representation is rapidly transformed to motor representation at the first interneuron layer. Our study reveals compact encoding of perception, memory, and locomotion in an experience-dependent navigational behavior in C. elegans.

摘要

脑回路赋予行为灵活性。在此,我们研究秀丽隐杆线虫中编码灵活趋化性的回路,该动物会向上或向下沿着氯化钠梯度(正向或负向趋化性)游动,以达到先前生长时的盐浓度(设定点)。ASER感觉神经元通过响应盐梯度调节重新定向运动的频率和方向来介导正向和负向趋化性。盐梯度和设定点记忆都编码在ASER的时间活动模式中。ASER下游紧邻的中间神经元中不同的时间活动模式编码趋化运动决策。不同的中间神经元组合调节正向与负向趋化性。我们得出结论,在趋化性回路中,感觉运动通路在初级感觉神经元之后立即分离,并且在第一个中间神经元层,感觉表征迅速转化为运动表征。我们的研究揭示了秀丽隐杆线虫中一种依赖经验的导航行为中感知、记忆和运动的紧凑编码。

相似文献

7
Multiple sensory neurons mediate starvation-dependent aversive navigation in .多种感觉神经元介导饥饿依赖的厌恶导航。
Proc Natl Acad Sci U S A. 2019 Sep 10;116(37):18673-18683. doi: 10.1073/pnas.1821716116. Epub 2019 Aug 27.
9
Context-dependent operation of neural circuits underlies a navigation behavior in .神经回路的上下文相关操作是 导航行为的基础。
Proc Natl Acad Sci U S A. 2020 Mar 17;117(11):6178-6188. doi: 10.1073/pnas.1918528117. Epub 2020 Mar 2.

引用本文的文献

4
Salt chemotaxis and its plasticity in hermaphroditic nematodes.雌雄同体线虫中的盐趋化性及其可塑性
MicroPubl Biol. 2025 Jul 10;2025. doi: 10.17912/micropub.biology.001692. eCollection 2025.
10
Hierarchical behavior control by a single class of interneurons.由单一类中间神经元实现的层级行为控制。
Proc Natl Acad Sci U S A. 2024 Nov 19;121(47):e2410789121. doi: 10.1073/pnas.2410789121. Epub 2024 Nov 12.

本文引用的文献

4
From the connectome to brain function.从连接组学到脑功能。
Nat Methods. 2013 Jun;10(6):483-90. doi: 10.1038/nmeth.2451.
6
The structure of the nervous system of the nematode Caenorhabditis elegans.秀丽隐杆线虫的神经系统结构。
Philos Trans R Soc Lond B Biol Sci. 1986 Nov 12;314(1165):1-340. doi: 10.1098/rstb.1986.0056.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验