Wirsich Jonathan, Bénar Christian, Ranjeva Jean-Philippe, Descoins Médéric, Soulier Elisabeth, Le Troter Arnaud, Confort-Gouny Sylviane, Liégeois-Chauvel Catherine, Guye Maxime
Aix-Marseille Université, CNRS, CRMBM UMR 7339, 13385, Marseille, France; APHM, Hôpitaux de la Timone, Pôle d'imagerie médicale, CEMEREM, 13385 Marseille, France; Aix-Marseille Université, Institut de Neurosciences des Systèmes, 13385 Marseille, France; INSERM, UMR_S 1106 , 13385 Marseille, France.
Aix-Marseille Université, Institut de Neurosciences des Systèmes, 13385 Marseille, France; INSERM, UMR_S 1106 , 13385 Marseille, France.
Neuroimage. 2014 Oct 15;100:325-36. doi: 10.1016/j.neuroimage.2014.05.075. Epub 2014 Jun 5.
Simultaneous EEG-fMRI has opened up new avenues for improving the spatio-temporal resolution of functional brain studies. However, this method usually suffers from poor EEG quality, especially for evoked potentials (ERPs), due to specific artifacts. As such, the use of EEG-informed fMRI analysis in the context of cognitive studies has particularly focused on optimizing narrow ERP time windows of interest, which ignores the rich diverse temporal information of the EEG signal. Here, we propose to use simultaneous EEG-fMRI to investigate the neural cascade occurring during face recognition in 14 healthy volunteers by using the successive ERP peaks recorded during the cognitive part of this process. N170, N400 and P600 peaks, commonly associated with face recognition, were successfully and reproducibly identified for each trial and each subject by using a group independent component analysis (ICA). For the first time we use this group ICA to extract several independent components (IC) corresponding to the sequence of activation and used single-trial peaks as modulation parameters in a general linear model (GLM) of fMRI data. We obtained an occipital-temporal-frontal stream of BOLD signal modulation, in accordance with the three successive IC-ERPs providing an unprecedented spatio-temporal characterization of the whole cognitive process as defined by BOLD signal modulation. By using this approach, the pattern of EEG-informed BOLD modulation provided improved characterization of the network involved than the fMRI-only analysis or the source reconstruction of the three ERPs; the latter techniques showing only two regions in common localized in the occipital lobe.
同步脑电图-功能磁共振成像(EEG-fMRI)为提高脑功能研究的时空分辨率开辟了新途径。然而,由于特定的伪迹,这种方法通常存在脑电图质量较差的问题,尤其是对于诱发电位(ERP)。因此,在认知研究背景下使用基于脑电图的功能磁共振成像分析特别侧重于优化感兴趣的狭窄ERP时间窗,而忽略了脑电图信号丰富多样的时间信息。在此,我们建议使用同步EEG-fMRI,通过利用在此过程的认知部分记录的连续ERP峰值,研究14名健康志愿者在人脸识别过程中发生的神经级联反应。通过使用组独立成分分析(ICA),成功且可重复地为每个试验和每个受试者识别出通常与人脸识别相关的N170、N400和P600峰值。我们首次使用这种组ICA提取与激活序列相对应的几个独立成分(IC),并将单次试验峰值用作功能磁共振成像数据的一般线性模型(GLM)中的调制参数。我们获得了枕颞额叶的血氧水平依赖(BOLD)信号调制流,这与三个连续的IC-ERP一致,提供了由BOLD信号调制定义的整个认知过程前所未有的时空特征。通过使用这种方法,基于脑电图的BOLD调制模式比仅进行功能磁共振成像分析或对三个ERP进行源重建能更好地表征所涉及的网络;后两种技术仅显示出枕叶中两个共同的区域。