Suppr超能文献

在集成光流体装置中进行光诱导介电泳分选并自动更换介质,可提高细胞活力。

Optically induced dielectropheresis sorting with automated medium exchange in an integrated optofluidic device resulting in higher cell viability.

作者信息

Lee Gwo-Bin, Wu Huan-Chun, Yang Po-Fu, Mai John D

机构信息

Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan.

出版信息

Lab Chip. 2014 Aug 7;14(15):2837-43. doi: 10.1039/c4lc00466c. Epub 2014 Jun 9.

Abstract

We demonstrated the integration of a microfluidic device with an optically induced dielectrophoresis (ODEP) device such that the critical medium replacement process was performed automatically and the cells could be subsequently manipulated by using digitally projected optical images. ODEP has been demonstrated to generate sufficient forces for manipulating particles/cells by projecting a light pattern onto photoconductive materials which creates virtual electrodes. The production of the ODEP force usually requires a medium that has a suitable electrical conductivity and an appropriate dielectric constant. Therefore, a 0.2 M sucrose solution is commonly used. However, this requires a complicated medium replacement process before one is able to manipulate cells. Furthermore, the 0.2 M sucrose solution is not suitable for the long-term viability of cells. In comparison to conventional manual processes, our automated medium replacement process only took 25 minutes. Experimental data showed that there was up to a 96.2% recovery rate for the manipulated cells. More importantly, the survival rate of the cells was greatly enhanced due to this faster automated process. This newly developed microfluidic chip provided a promising platform for the rapid replacement of the cell medium and this was also the first time that an ODEP device was integrated with other active flow control components in a microfluidic device. By improving cell viability after cell manipulation, this design may contribute to the practical integration of ODEP modules into other lab-on-a-chip devices and biomedical applications in the future.

摘要

我们展示了一种微流控装置与光诱导介电泳(ODEP)装置的集成,从而使关键的培养基更换过程能够自动进行,并且随后可以使用数字投影光学图像对细胞进行操控。通过将光图案投射到能产生虚拟电极的光电导材料上,ODEP已被证明能产生足够的力来操控颗粒/细胞。产生ODEP力通常需要一种具有合适电导率和适当介电常数的培养基。因此,通常使用0.2M的蔗糖溶液。然而,在能够操控细胞之前,这需要一个复杂的培养基更换过程。此外,0.2M的蔗糖溶液不适合细胞的长期存活。与传统的手动过程相比,我们的自动培养基更换过程仅需25分钟。实验数据表明,被操控细胞的回收率高达96.2%。更重要的是,由于这个更快的自动化过程,细胞的存活率大大提高。这种新开发的微流控芯片为细胞培养基的快速更换提供了一个有前景的平台,这也是首次将ODEP装置与微流控装置中的其他主动流动控制组件集成在一起。通过提高细胞操控后的活力,这种设计可能有助于未来将ODEP模块实际集成到其他芯片实验室装置和生物医学应用中。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验