Suppr超能文献

使用具有 3D 导电 PDMS 复合电极的 PDMS 微流控装置中的 AC 介电泳连续对微颗粒进行大小排序和分离。

Continuous sorting and separation of microparticles by size using AC dielectrophoresis in a PDMS microfluidic device with 3-D conducting PDMS composite electrodes.

机构信息

School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore.

出版信息

Electrophoresis. 2010 Aug;31(15):2622-31. doi: 10.1002/elps.201000087.

Abstract

Soft lithography technology allows for the development of numerous PDMS-based microfluidic devices for manipulation of particles and cells. However, integrating metallic electrodes with PDMS-based channel structures is challenging due to weak adhesion between metal and PDMS. To overcome this issue, we develop a new PDMS-based microfluidic device for continuous sorting and separation of microparticles by size using AC dielectrophoresis (DEP) with 3-D conducting PDMS composites as sidewall electrodes. The composites are synthesized by mixing silver powders with PDMS gel and such composite electrodes can easily be integrated with the PDMS microchannels. Furthermore, the sidewall electrodes also allow DEP forces to distribute three dimensionally, thus enhancing DEP effects in the entire region of channels. The capability of such PDMS-based microfluidic device is demonstrated for continuously sorting and separating 10 and 15 mum particles, and also for separating 5 from 10 mum particles. Together with experimental results, analysis of particle's trajectory based on Lagrangian approach provides insights into how microparticles transport under the effects of hydrodynamic and DEP forces in the present PDMS-based microfluidic device.

摘要

软光刻技术允许开发许多基于 PDMS 的微流控器件,用于操纵颗粒和细胞。然而,由于金属和 PDMS 之间的附着力弱,将金属电极与基于 PDMS 的通道结构集成具有挑战性。为了解决这个问题,我们开发了一种新的基于 PDMS 的微流控装置,用于通过使用 3D 导电 PDMS 复合材料作为侧壁电极的交流介电泳 (DEP) 对微颗粒进行连续的大小排序和分离。复合材料是通过将银粉与 PDMS 凝胶混合而合成的,这种复合电极可以很容易地与 PDMS 微通道集成。此外,侧壁电极还允许 DEP 力在三维方向上分布,从而增强通道整个区域的 DEP 效应。这种基于 PDMS 的微流控装置的功能通过连续排序和分离 10 和 15 微米的颗粒以及分离 5 到 10 微米的颗粒来证明。结合实验结果,基于拉格朗日方法的颗粒轨迹分析提供了关于在当前基于 PDMS 的微流控装置中,微颗粒如何在流体动力和 DEP 力的作用下运输的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验