Mesnard-Hoaglin Nichole A, Xin Junping, Haulcomb Melissa M, Batka Richard J, Sanders Virginia M, Jones Kathryn J
Neuroscience Institute, Loyola University Medical Center, Maywood, IL 60153, USA; Research and Development Service, Hines VAMC, Hines, IL 60141, USA; Dept. of Anatomy and Cell Biology, Indiana University, Indianapolis, IN 46202, USA.
Neuroscience Institute, Loyola University Medical Center, Maywood, IL 60153, USA; Research and Development Service, Hines VAMC, Hines, IL 60141, USA.
Brain Behav Immun. 2014 Aug;40:55-60. doi: 10.1016/j.bbi.2014.05.019. Epub 2014 Jun 6.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease involving motoneuron (MN) axonal withdrawal and cell death. Previously, we established that facial MN (FMN) survival levels in the SOD1(G93A) transgenic mouse model of ALS are reduced and nerve regeneration is delayed, similar to immunodeficient RAG2(-/-) mice, after facial nerve axotomy. The objective of this study was to examine the functionality of SOD1(G93A) splenic microenvironment, focusing on CD4(+) T cells, with regard to defects in immune-mediated neuroprotection of injured MN. We utilized the RAG2(-/-) and SOD1(G93A) mouse models, along with the facial nerve axotomy paradigm and a variety of cellular adoptive transfers, to assess immune-mediated neuroprotection of FMN survival levels. We determined that adoptively transferred SOD1(G93A) unfractionated splenocytes into RAG2(-/-) mice were unable to support FMN survival after axotomy, but that adoptive transfer of isolated SOD1(G93A) CD4(+) T cells could. Although WT unfractionated splenocytes adoptively transferred into SOD1(G93A) mice were able to maintain FMN survival levels, WT CD4(+) T cells alone could not. Importantly, these results suggest that SOD1(G93A) CD4(+) T cells retain neuroprotective functionality when removed from a dysfunctional SOD1(G93A) peripheral splenic microenvironment. These results also indicate that the SOD1(G93A) central nervous system microenvironment is able to re-activate CD4(+) T cells for immune-mediated neuroprotection when a permissive peripheral microenvironment exists. We hypothesize that a suppressive SOD1(G93A) peripheral splenic microenvironment may compromise neuroprotective CD4(+) T cell activation and/or differentiation, which, in turn, results in impaired immune-mediated neuroprotection for MN survival after peripheral axotomy in SOD1(G93A) mice.
肌萎缩侧索硬化症(ALS)是一种致命的神经退行性疾病,涉及运动神经元(MN)轴突退缩和细胞死亡。此前,我们发现,在ALS的SOD1(G93A)转基因小鼠模型中,面神经切断术后,面运动神经元(FMN)的存活水平降低,神经再生延迟,这与免疫缺陷的RAG2(-/-)小鼠相似。本研究的目的是研究SOD1(G93A)脾脏微环境的功能,重点是CD4(+)T细胞,以探讨免疫介导的对损伤MN的神经保护缺陷。我们利用RAG2(-/-)和SOD1(G93A)小鼠模型,结合面神经切断范式和各种细胞过继转移,来评估免疫介导的对FMN存活水平的神经保护作用。我们确定,将未分级的SOD1(G93A)脾细胞过继转移到RAG2(-/-)小鼠中,在面神经切断术后无法支持FMN存活,但过继转移分离出的SOD1(G93A)CD4(+)T细胞则可以。虽然将野生型未分级脾细胞过继转移到SOD1(G93A)小鼠中能够维持FMN存活水平,但单独的野生型CD4(+)T细胞却不能。重要 的是,这些结果表明,当从功能失调的SOD1(G93A)外周脾脏微环境中分离出来时,SOD1(G93A)CD4(+)T细胞仍保留神经保护功能。这些结果还表明,当存在允许的外周微环境时,SOD1(G93A)中枢神经系统微环境能够重新激活CD4(+)T细胞以进行免疫介导的神经保护。我们推测,抑制性的SOD1(G93A)外周脾脏微环境可能会损害神经保护性CD4(+)T细胞活化和/或分化,进而导致SOD1(G93A)小鼠外周神经切断术后,免疫介导的对MN存活的神经保护受损。