Haulcomb Melissa M, Mesnard Nichole A, Batka Richard J, Alexander Thomas D, Sanders Virginia M, Jones Kathryn J
Neuroscience Program, Loyola University Medical Center, Maywood, Illinois, 60153; Research and Development Service, Hines Veterans Administration Hospital, Hines, Illinois, 60141.
J Comp Neurol. 2014 Jul 1;522(10):2349-76. doi: 10.1002/cne.23538.
The target disconnection theory of amyotrophic lateral sclerosis (ALS) pathogenesis suggests that disease onset is initiated by a peripheral pathological event resulting in neuromuscular junction loss and motoneuron (MN) degeneration. Presymptomatic mSOD1(G93A) mouse facial MN (FMN) are more susceptible to axotomy-induced cell death than wild-type (WT) FMN, which suggests additional CNS pathology. We have previously determined that the mSOD1 molecular response to facial nerve axotomy is phenotypically regenerative and indistinguishable from WT, whereas the surrounding microenvironment shows significant dysregulation in the mSOD1 facial nucleus. To elucidate the mechanisms underlying the enhanced mSOD1 FMN loss after axotomy, we superimposed the facial nerve axotomy model on presymptomatic mSOD1 mice and investigated gene expression for death receptor pathways after target disconnection by axotomy vs. disease progression. We determined that the TNFR1 death receptor pathway is involved in axotomy-induced FMN death in WT and is partially responsible for the mSOD1 FMN death. In contrast, an inherent mSOD1 CNS pathology resulted in a suppressed glial reaction and an upregulation in the Fas death pathway after target disconnection. We propose that the dysregulated mSOD1 glia fail to provide support the injured MN, leading to Fas-induced FMN death. Finally, we demonstrate that, during disease progression, the mSOD1 facial nucleus displays target disconnection-induced gene expression changes that mirror those induced by axotomy. This validates the use of axotomy as an investigative tool in understanding the role of peripheral target disconnection in the pathogenesis of ALS.
肌萎缩侧索硬化症(ALS)发病机制的靶标切断理论表明,疾病发作是由外周病理事件引发的,该事件导致神经肌肉接头丧失和运动神经元(MN)变性。与野生型(WT)面神经运动神经元(FMN)相比,症状前的mSOD1(G93A)小鼠FMN更容易受到轴突切断诱导的细胞死亡影响,这表明存在额外的中枢神经系统病理变化。我们之前已经确定,mSOD1对面神经轴突切断的分子反应在表型上是再生性的,与WT没有区别,而周围的微环境在mSOD1面神经核中显示出明显的失调。为了阐明轴突切断后mSOD1 FMN损失增加的潜在机制,我们将面神经轴突切断模型叠加在症状前的mSOD1小鼠上,并研究了轴突切断与疾病进展导致靶标切断后死亡受体途径的基因表达。我们确定TNFR1死亡受体途径参与了WT中轴突切断诱导的FMN死亡,并且部分负责mSOD1 FMN的死亡。相比之下,固有的mSOD1中枢神经系统病理变化导致胶质反应受到抑制,并且在靶标切断后Fas死亡途径上调。我们提出,失调的mSOD1胶质细胞无法为受损的MN提供支持,导致Fas诱导的FMN死亡。最后,我们证明,在疾病进展过程中,mSOD1面神经核显示出靶标切断诱导的基因表达变化,这些变化与轴突切断诱导的变化相似。这验证了轴突切断作为一种研究工具在理解外周靶标切断在ALS发病机制中的作用方面的有效性。