Denes Peter
Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
Philos Trans R Soc Lond B Biol Sci. 2014 Jul 17;369(1647):20130334. doi: 10.1098/rstb.2013.0334.
Our ability to harness the advances in microelectronics over the past decade(s) for X-ray detection has resulted in significant improvements in the state of the art. Biology with X-ray free-electron lasers present daunting detector challenges: all of the photons arrive at the same time, and individual high peak power pulses must be read out shot-by-shot. Direct X-ray detection in silicon pixel detectors--monolithic or hybrid--are the standard for XFELs today. For structural biology, improvements are needed for today's 10-100 Hz XFELs, and further improvements are required for tomorrow's 10+ kHz XFELs. This article will discuss detector challenges, why they arise and ways to overcome them, along with the current state of the art.
在过去几十年中,我们利用微电子学的进展进行X射线检测的能力已使该领域的技术水平有了显著提高。使用X射线自由电子激光进行生物学研究对探测器提出了严峻挑战:所有光子同时到达,且必须逐次读出单个高峰值功率脉冲。硅像素探测器(单片或混合式)中的直接X射线检测是当今X射线自由电子激光的标准方法。对于结构生物学而言,当今10 - 100赫兹的X射线自由电子激光需要改进,而未来10千赫以上的X射线自由电子激光则需要进一步改进。本文将讨论探测器面临的挑战、挑战产生的原因以及克服这些挑战的方法,同时介绍当前的技术水平。