Suppr超能文献

惯性微流体物理学

Inertial microfluidic physics.

作者信息

Amini Hamed, Lee Wonhee, Di Carlo Dino

机构信息

Department of Bioengineering, University of California, 420 Westwood Plaza, 5121 Engineering V, P.O. Box 951600, Los Angeles, CA 90095, USA.

出版信息

Lab Chip. 2014 Aug 7;14(15):2739-61. doi: 10.1039/c4lc00128a. Epub 2014 Jun 10.

Abstract

Microfluidics has experienced massive growth in the past two decades, and especially with advances in rapid prototyping researchers have explored a multitude of channel structures, fluid and particle mixtures, and integration with electrical and optical systems towards solving problems in healthcare, biological and chemical analysis, materials synthesis, and other emerging areas that can benefit from the scale, automation, or the unique physics of these systems. Inertial microfluidics, which relies on the unconventional use of fluid inertia in microfluidic platforms, is one of the emerging fields that make use of unique physical phenomena that are accessible in microscale patterned channels. Channel shapes that focus, concentrate, order, separate, transfer, and mix particles and fluids have been demonstrated, however physical underpinnings guiding these channel designs have been limited and much of the development has been based on experimentally-derived intuition. Here we aim to provide a deeper understanding of mechanisms and underlying physics in these systems which can lead to more effective and reliable designs with less iteration. To place the inertial effects into context we also discuss related fluid-induced forces present in particulate flows including forces due to non-Newtonian fluids, particle asymmetry, and particle deformability. We then highlight the inverse situation and describe the effect of the suspended particles acting on the fluid in a channel flow. Finally, we discuss the importance of structured channels, i.e. channels with boundary conditions that vary in the streamwise direction, and their potential as a means to achieve unprecedented three-dimensional control over fluid and particles in microchannels. Ultimately, we hope that an improved fundamental and quantitative understanding of inertial fluid dynamic effects can lead to unprecedented capabilities to program fluid and particle flow towards automation of biomedicine, materials synthesis, and chemical process control.

摘要

在过去二十年中,微流控技术经历了大规模的发展。特别是随着快速成型技术的进步,研究人员探索了多种通道结构、流体和颗粒混合物,以及与电气和光学系统的集成,以解决医疗保健、生物和化学分析、材料合成以及其他新兴领域中的问题,这些领域可以从这些系统的规模、自动化或独特物理特性中受益。惯性微流控技术依赖于在微流控平台中对流体惯性的非常规利用,是利用微尺度图案化通道中独特物理现象的新兴领域之一。已经展示了能够聚焦、浓缩、排序、分离、转移和混合颗粒与流体的通道形状,然而指导这些通道设计的物理基础一直有限,并且大部分开发工作是基于实验得出的直觉。在这里,我们旨在更深入地理解这些系统中的机制和基础物理原理,从而能够以更少的迭代实现更有效、更可靠的设计。为了将惯性效应置于背景中,我们还讨论了颗粒流中存在的相关流体诱导力,包括非牛顿流体、颗粒不对称性和颗粒可变形性所产生的力。然后,我们突出相反的情况,并描述悬浮颗粒对通道流中流体的作用效果。最后,我们讨论结构化通道的重要性,即边界条件在流向方向上变化的通道,以及它们作为在微通道中实现对流体和颗粒前所未有的三维控制手段的潜力。最终,我们希望对惯性流体动力学效应有更深入的基础和定量理解,能够带来前所未有的能力,将流体和颗粒流编程用于生物医学、材料合成和化学过程控制的自动化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验