From the Department of Biology, San Diego State Heart Institute, San Diego State University, CA (S.D., M.H.K., B.J., J.E., M.V., H.T., B.C., L.O., K.S., A.D.L.T., M.A.S.); Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla (D.A.K., A.B.G.); and Department of Medicine, Medical University of South Carolina Hollings Cancer Center, Charleston (A.S.K.), and Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, Orlando, FL (D.P.K.).
Circ Res. 2014 Jul 18;115(3):376-87. doi: 10.1161/CIRCRESAHA.115.304441. Epub 2014 Jun 10.
The senescent cardiac phenotype is accompanied by changes in mitochondrial function and biogenesis causing impairment in energy provision. The relationship between myocardial senescence and Pim kinases deserves attention because Pim-1 kinase is cardioprotective, in part, by preservation of mitochondrial integrity. Study of the pathological effects resulting from genetic deletion of all Pim kinase family members could provide important insight about cardiac mitochondrial biology and the aging phenotype.
To demonstrate that myocardial senescence is promoted by loss of Pim leading to premature aging and aberrant mitochondrial function.
Cardiac myocyte senescence was evident at 3 months in Pim triple knockout mice, where all 3 isoforms of Pim kinase family members are genetically deleted. Cellular hypertrophic remodeling and fetal gene program activation were followed by heart failure at 6 months in Pim triple knockout mice. Metabolic dysfunction is an underlying cause of cardiac senescence and instigates a decline in cardiac function. Altered mitochondrial morphology is evident consequential to Pim deletion together with decreased ATP levels and increased phosphorylated AMP-activated protein kinase, exposing an energy deficiency in Pim triple knockout mice. Expression of the genes encoding master regulators of mitochondrial biogenesis, PPARγ (peroxisome proliferator-activated receptor gamma) coactivator-1 α and β, was diminished in Pim triple knockout hearts, as were downstream targets included in mitochondrial energy transduction, including fatty acid oxidation. Reversal of the dysregulated metabolic phenotype was observed by overexpressing c-Myc (Myc proto-oncogene protein), a downstream target of Pim kinases.
Pim kinases prevent premature cardiac aging and maintain a healthy pool of functional mitochondria leading to efficient cellular energetics.
衰老的心脏表型伴随着线粒体功能和生物发生的变化,导致能量供应受损。心肌衰老与 Pim 激酶之间的关系值得关注,因为 Pim-1 激酶通过维持线粒体完整性在一定程度上具有心脏保护作用。研究由于缺失所有 Pim 激酶家族成员而导致的病理影响,可以为心脏线粒体生物学和衰老表型提供重要的见解。
证明 Pim 的缺失会促进心肌衰老,导致过早衰老和异常的线粒体功能。
在 Pim 三重敲除小鼠中,在 3 个月时就可以观察到心肌细胞衰老,其中 Pim 激酶家族的所有 3 个同工型都被基因缺失。细胞肥大重塑和胎儿基因程序激活后,在 Pim 三重敲除小鼠中 6 个月时出现心力衰竭。代谢功能障碍是心脏衰老的根本原因,并引发心脏功能下降。线粒体形态的改变是 Pim 缺失的后果,伴随着 ATP 水平降低和磷酸化 AMP 激活蛋白激酶增加,暴露了 Pim 三重敲除小鼠的能量不足。编码线粒体生物发生的主要调节因子的基因表达,过氧化物酶体增殖物激活受体 γ(peroxisome proliferator-activated receptor gamma)共激活因子-1α和β,在 Pim 三重敲除心脏中减少,包括脂肪酸氧化在内的下游靶标也减少了。通过过表达 Pim 激酶的下游靶标 c-Myc(Myc 原癌基因蛋白),观察到失调的代谢表型得到逆转。
Pim 激酶可防止心脏过早衰老并维持健康的功能性线粒体池,从而实现有效的细胞能量代谢。