Suppr超能文献

具有空前硬度和稳定性的纳米孪晶金刚石。

Nanotwinned diamond with unprecedented hardness and stability.

机构信息

1] State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China [2].

State Key Laboratory for Superhard Materials, Jilin University, Changchun 130012, China.

出版信息

Nature. 2014 Jun 12;510(7504):250-3. doi: 10.1038/nature13381.

Abstract

Although diamond is the hardest material for cutting tools, poor thermal stability has limited its applications, especially at high temperatures. Simultaneous improvement of the hardness and thermal stability of diamond has long been desirable. According to the Hall-Petch effect, the hardness of diamond can be enhanced by nanostructuring (by means of nanograined and nanotwinned microstructures), as shown in previous studies. However, for well-sintered nanograined diamonds, the grain sizes are technically limited to 10-30 nm (ref. 3), with degraded thermal stability compared with that of natural diamond. Recent success in synthesizing nanotwinned cubic boron nitride (nt-cBN) with a twin thickness down to ∼3.8 nm makes it feasible to simultaneously achieve smaller nanosize, ultrahardness and superior thermal stability. At present, nanotwinned diamond (nt-diamond) has not been fabricated successfully through direct conversions of various carbon precursors (such as graphite, amorphous carbon, glassy carbon and C60). Here we report the direct synthesis of nt-diamond with an average twin thickness of ∼5 nm, using a precursor of onion carbon nanoparticles at high pressure and high temperature, and the observation of a new monoclinic crystalline form of diamond coexisting with nt-diamond. The pure synthetic bulk nt-diamond material shows unprecedented hardness and thermal stability, with Vickers hardness up to ∼200 GPa and an in-air oxidization temperature more than 200 °C higher than that of natural diamond. The creation of nanotwinned microstructures offers a general pathway for manufacturing new advanced carbon-based materials with exceptional thermal stability and mechanical properties.

摘要

虽然钻石是切割工具最硬的材料,但较差的热稳定性限制了其应用,尤其是在高温下。长期以来,人们一直希望同时提高钻石的硬度和热稳定性。根据霍尔-佩奇效应,通过纳米结构化(通过纳米晶粒和纳米孪晶微观结构)可以提高钻石的硬度,如先前的研究所示。然而,对于烧结良好的纳米晶粒钻石,晶粒尺寸在技术上限制在 10-30nm(参考文献 3),与天然钻石相比,热稳定性降低。最近在合成具有孪晶厚度低至约 3.8nm 的纳米孪晶立方氮化硼(nt-cBN)方面的成功,使得同时实现更小的纳米尺寸、超硬度和优异的热稳定性成为可能。目前,尚未通过各种碳前体(如石墨、非晶碳、玻璃碳和 C60)的直接转化成功制备出纳米孪晶钻石(nt-diamond)。在这里,我们报告了在高压高温下使用洋葱状碳纳米颗粒前体制备具有平均孪晶厚度约为 5nm 的 nt-diamond,并观察到与 nt-diamond共存的一种新的单斜晶系金刚石的结晶形式。纯合成块状 nt-diamond 材料表现出前所未有的硬度和热稳定性,维氏硬度高达约 200GPa,在空气中的氧化温度比天然钻石高 200°C 以上。纳米孪晶微观结构的创造为制造具有优异热稳定性和机械性能的新型先进碳基材料提供了一种通用途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验