State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China.
Nature. 2013 Jan 17;493(7432):385-8. doi: 10.1038/nature11728.
Cubic boron nitride (cBN) is a well known superhard material that has a wide range of industrial applications. Nanostructuring of cBN is an effective way to improve its hardness by virtue of the Hall-Petch effect--the tendency for hardness to increase with decreasing grain size. Polycrystalline cBN materials are often synthesized by using the martensitic transformation of a graphite-like BN precursor, in which high pressures and temperatures lead to puckering of the BN layers. Such approaches have led to synthetic polycrystalline cBN having grain sizes as small as ∼14 nm (refs 1, 2, 4, 5). Here we report the formation of cBN with a nanostructure dominated by fine twin domains of average thickness ∼3.8 nm. This nanotwinned cBN was synthesized from specially prepared BN precursor nanoparticles possessing onion-like nested structures with intrinsically puckered BN layers and numerous stacking faults. The resulting nanotwinned cBN bulk samples are optically transparent with a striking combination of physical properties: an extremely high Vickers hardness (exceeding 100 GPa, the optimal hardness of synthetic diamond), a high oxidization temperature (∼1,294 °C) and a large fracture toughness (>12 MPa m(1/2), well beyond the toughness of commercial cemented tungsten carbide, ∼10 MPa m(1/2)). We show that hardening of cBN is continuous with decreasing twin thickness down to the smallest sizes investigated, contrasting with the expected reverse Hall-Petch effect below a critical grain size or the twin thickness of ∼10-15 nm found in metals and alloys.
立方氮化硼(cBN)是一种众所周知的超硬材料,具有广泛的工业应用。通过霍尔-佩奇效应(即硬度随晶粒尺寸减小而增加的趋势),对 cBN 进行纳米结构化是提高其硬度的有效方法。多晶 cBN 材料通常通过石墨状 BN 前体的马氏体相变来合成,其中高压和高温导致 BN 层的起皱。这种方法导致合成的多晶 cBN 的晶粒尺寸小至约 14nm(参考文献 1、2、4、5)。在这里,我们报告了由平均厚度约为 3.8nm 的细小孪晶畴主导的 cBN 纳米结构的形成。这种纳米孪晶 cBN 是由具有洋葱状嵌套结构、固有起皱 BN 层和大量位错的特殊制备的 BN 前体纳米颗粒合成的。所得纳米孪晶 cBN 块状样品具有光学透明性,具有一系列引人注目的物理性质:极高的维氏硬度(超过 100GPa,是合成金刚石的最佳硬度)、高氧化温度(约 1294°C)和大断裂韧性(>12MPa·m1/2,远远超过商业硬质合金的韧性,约 10MPa·m1/2)。我们表明,随着孪晶厚度的减小,cBN 的硬化是连续的,直至研究的最小尺寸,这与在临界晶粒尺寸或约 10-15nm 的孪晶厚度以下预期的反向霍尔-佩奇效应形成对比,在金属和合金中发现了这种效应。