Salunke Gayatri R, Ghosh Sougata, Santosh Kumar R J, Khade Samiksha, Vashisth Priya, Kale Trupti, Chopade Snehal, Pruthi Vikas, Kundu Gopal, Bellare Jayesh R, Chopade Balu A
Institute of Bioinformatics and Biotechnology, University of Pune, India.
National Chemical Laboratory, Pune, India.
Int J Nanomedicine. 2014 May 27;9:2635-53. doi: 10.2147/IJN.S59834. eCollection 2014.
Nanoparticles (NPs) have gained significance in medical fields due to their high surface-area-to-volume ratio. In this study, we synthesized NPs from a medicinally important plant - Plumbago zeylanica.
Aqueous root extract of P. zeylanica (PZRE) was analyzed for the presence of flavonoids, sugars, and organic acids using high-performance thin-layer chromatography (HPTLC), gas chromatography-time of flight-mass spectrometry (GC-TOF-MS), and biochemical methods. The silver NPs (AgNPs), gold NPs (AuNPs), and bimetallic NPs (AgAuNPs) were synthesized from root extract and characterized using ultraviolet-visible spectra, X-ray diffraction (XRD), energy-dispersive spectrometry (EDS), transmission electron microscopy (TEM), and dynamic light scattering (DLS). The effects of these NPs on Acinetobacter baumannii, Staphylococcus aureus, and Escherichia coli biofilms were studied using quantitative biofilm inhibition and disruption assays, as well as using fluorescence, scanning electron microscopy, and atomic force microscopy.
PZRE showed the presence of phenolics, such as plumbagin, and flavonoids, in addition to citric acid, sucrose, glucose, fructose, and starch, using HPTLC, GC-TOF-MS, and quantitative analysis. Bioreduction of silver nitrate (AgNO₃) and chloroauric acid (HAuCl₄) were confirmed at absorbances of 440 nm (AgNPs), 570 nm (AuNPs), and 540 nm (AgAuNPs), respectively. The maximum rate of synthesis at 50°C was achieved with 5 mM AgNO₃ within 4.5 hours for AgNPs; and with 0.7 mM HAuCl4 within 5 hours for AuNPs. The synthesis of AgAuNPs, which completed within 90 minutes with 0.7 mM AgNO₃ and HAuCl₄, was found to be the fastest. Fourier-transform infrared spectroscopy confirmed bioreduction, while EDS and XRD patterns confirmed purity and the crystalline nature of the NPs, respectively. TEM micrographs and DLS showed about 60 nm monodispersed Ag nanospheres, 20-30 nm Au nanospheres adhering to form Au nanotriangles, and about 90 nm hexagonal blunt-ended AgAuNPs. These NPs also showed antimicrobial and antibiofilm activity against E. coli, A. baumannii, S. aureus, and a mixed culture of A. baumannii and S. aureus. AgNPs inhibited biofilm in the range of 96%-99% and AgAuNPs from 93% to 98% in single-culture biofilms. AuNPs also showed biofilm inhibition, with the highest of 98% in S. aureus. AgNPs also showed good biofilm disruption, with the highest of 88% in A. baumannii.
This is the first report on rapid and efficient synthesis of AgNPs, AuNPs and AgAuNPs from P. zeylanica and their effect on quantitative inhibition and disruption of bacterial biofilms.
纳米颗粒(NPs)因其高的表面积与体积比而在医学领域具有重要意义。在本研究中,我们从一种具有药用价值的植物——白花丹中合成了纳米颗粒。
使用高效薄层色谱法(HPTLC)、气相色谱 - 飞行时间质谱法(GC - TOF - MS)和生化方法分析白花丹根水提取物(PZRE)中黄酮类、糖类和有机酸的存在情况。从根提取物中合成银纳米颗粒(AgNPs)、金纳米颗粒(AuNPs)和双金属纳米颗粒(AgAuNPs),并使用紫外可见光谱、X射线衍射(XRD)、能量色散光谱(EDS)、透射电子显微镜(TEM)和动态光散射(DLS)对其进行表征。使用定量生物膜抑制和破坏试验,以及荧光、扫描电子显微镜和原子力显微镜研究这些纳米颗粒对鲍曼不动杆菌、金黄色葡萄球菌和大肠杆菌生物膜的影响。
使用HPTLC、GC - TOF - MS和定量分析方法,PZRE除了含有柠檬酸、蔗糖、葡萄糖、果糖和淀粉外,还显示出酚类物质如白花丹醌和黄酮类物质的存在。分别在440nm(AgNPs)、570nm(AuNPs)和540nm(AgAuNPs)的吸光度下证实了硝酸银(AgNO₃)和氯金酸(HAuCl₄)的生物还原。AgNPs在50°C下使用5mM AgNO₃在4.5小时内实现了最大合成速率;AuNPs在50°C下使用0.7mM HAuCl₄在5小时内实现了最大合成速率。发现AgAuNPs的合成速度最快,在90分钟内使用0.7mM AgNO₃和HAuCl₄即可完成。傅里叶变换红外光谱证实了生物还原,而EDS和XRD图谱分别证实了纳米颗粒的纯度和晶体性质。TEM显微照片和DLS显示约60nm的单分散银纳米球、20 - 30nm的金纳米球附着形成金纳米三角形,以及约90nm的六边形钝端AgAuNPs。这些纳米颗粒还对大肠杆菌、鲍曼不动杆菌、金黄色葡萄球菌以及鲍曼不动杆菌和金黄色葡萄球菌的混合培养物表现出抗菌和抗生物膜活性。在单培养生物膜中,AgNPs对生物膜的抑制率在96% - 99%范围内,AgAuNPs的抑制率在93%至98%之间。AuNPs也表现出生物膜抑制作用,在金黄色葡萄球菌中最高可达98%。AgNPs还表现出良好的生物膜破坏作用,在鲍曼不动杆菌中最高可达88%。
这是关于从白花丹中快速高效合成AgNPs、AuNPs和AgAuNPs及其对细菌生物膜定量抑制和破坏作用的首次报道。