Facultad de Ciencias, Universidad Autonoma de San Luis Potosi, San Luis Potosi, Mexico.
Instituto de Investigacion en Comunicacion Optica, Universidad Autonoma de San Luis Potosi, San Luis Potosi, Mexico.
PLoS One. 2021 Mar 18;16(3):e0248301. doi: 10.1371/journal.pone.0248301. eCollection 2021.
The deconvolution process is a key step for quantitative evaluation of fluorescence lifetime imaging microscopy (FLIM) samples. By this process, the fluorescence impulse responses (FluoIRs) of the sample are decoupled from the instrument response (InstR). In blind deconvolution estimation (BDE), the FluoIRs and InstR are jointly extracted from a dataset with minimal a priori information. In this work, two BDE algorithms are introduced based on linear combinations of multi-exponential functions to model each FluoIR in the sample. For both schemes, the InstR is assumed with a free-form and a sparse structure. The local perspective of the BDE methodology assumes that the characteristic parameters of the exponential functions (time constants and scaling coefficients) are estimated based on a single spatial point of the dataset. On the other hand, the same exponential functions are used in the whole dataset in the global perspective, and just the scaling coefficients are updated for each spatial point. A least squares formulation is considered for both BDE algorithms. To overcome the nonlinear interaction in the decision variables, an alternating least squares (ALS) methodology iteratively solves both estimation problems based on non-negative and constrained optimizations. The validation stage considered first synthetic datasets at different noise types and levels, and a comparison with the standard deconvolution techniques with a multi-exponential model for FLIM measurements, as well as, with two BDE methodologies in the state of the art: Laguerre basis, and exponentials library. For the experimental evaluation, fluorescent dyes and oral tissue samples were considered. Our results show that local and global perspectives are consistent with the standard deconvolution techniques, and they reached the fastest convergence responses among the BDE algorithms with the best compromise in FluoIRs and InstR estimation errors.
去卷积过程是荧光寿命成像显微镜(FLIM)样本定量评估的关键步骤。通过这个过程,从仪器响应(InstR)中分离出样本的荧光脉冲响应(FluoIR)。在盲去卷积估计(BDE)中,从具有最小先验信息的数据集中共同提取 FluoIR 和 InstR。在这项工作中,介绍了两种基于多指数函数线性组合的 BDE 算法,用于对样本中的每个 FluoIR 进行建模。对于这两种方案,InstR 假设具有自由形式和稀疏结构。BDE 方法的局部观点假设指数函数的特征参数(时间常数和比例系数)是基于数据集的单个空间点进行估计的。另一方面,在全局观点中,相同的指数函数用于整个数据集,并且仅针对每个空间点更新比例系数。对于这两种 BDE 算法,都考虑了最小二乘公式。为了克服决策变量中的非线性相互作用,交替最小二乘(ALS)方法基于非负和约束优化迭代地解决这两个估计问题。验证阶段首先考虑了不同噪声类型和水平的合成数据集,并与具有多指数模型的 FLIM 测量的标准去卷积技术进行了比较,以及与两种最先进的 BDE 方法进行了比较:拉盖尔基和指数库。对于实验评估,考虑了荧光染料和口腔组织样本。我们的结果表明,局部和全局观点与标准去卷积技术一致,并且它们在 BDE 算法中达到了最快的收敛响应,在 FluoIR 和 InstR 估计误差方面达到了最佳折衷。