Suppr超能文献

通过历史聚类进行神经元脉冲序列熵估计。

Neuronal spike train entropy estimation by history clustering.

作者信息

Watters Nicholas, Reeke George N

机构信息

Harvard College, Cambridge, MA 02138, U.S.A.

出版信息

Neural Comput. 2014 Sep;26(9):1840-72. doi: 10.1162/NECO_a_00627. Epub 2014 Jun 12.

Abstract

Neurons send signals to each other by means of sequences of action potentials (spikes). Ignoring variations in spike amplitude and shape that are probably not meaningful to a receiving cell, the information content, or entropy of the signal depends on only the timing of action potentials, and because there is no external clock, only the interspike intervals, and not the absolute spike times, are significant. Estimating spike train entropy is a difficult task, particularly with small data sets, and many methods of entropy estimation have been proposed. Here we present two related model-based methods for estimating the entropy of neural signals and compare them to existing methods. One of the methods is fast and reasonably accurate, and it converges well with short spike time records; the other is impractically time-consuming but apparently very accurate, relying on generating artificial data that are a statistical match to the experimental data. Using the slow, accurate method to generate a best-estimate entropy value, we find that the faster estimator converges to this value more closely and with smaller data sets than many existing entropy estimators.

摘要

神经元通过动作电位序列(尖峰)相互发送信号。忽略对接收细胞可能没有意义的尖峰幅度和形状的变化,信号的信息内容或熵仅取决于动作电位的时间,并且由于没有外部时钟,只有峰峰间隔而不是绝对尖峰时间是有意义的。估计尖峰序列熵是一项艰巨的任务,特别是对于小数据集,并且已经提出了许多熵估计方法。在这里,我们提出了两种基于模型的相关方法来估计神经信号的熵,并将它们与现有方法进行比较。其中一种方法快速且相当准确,并且在短尖峰时间记录下收敛良好;另一种方法在时间上不切实际地耗时,但显然非常准确,它依赖于生成与实验数据在统计上匹配的人工数据。使用缓慢、准确的方法生成最佳估计熵值,我们发现,与许多现有的熵估计器相比,更快的估计器在更小的数据集下更接近地收敛到这个值。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验