Suppr超能文献

信息热力学推导细胞信号转导的熵流作为二元编码系统的模型。

Information Thermodynamics Derives the Entropy Current of Cell Signal Transduction as a Model of a Binary Coding System.

作者信息

Tsuruyama Tatsuaki

机构信息

Department of Discovery Medicine, Pathology Division, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8315, Japan.

出版信息

Entropy (Basel). 2018 Feb 24;20(2):145. doi: 10.3390/e20020145.

Abstract

The analysis of cellular signaling cascades based on information thermodynamics has recently developed considerably. A signaling cascade may be considered a binary code system consisting of two types of signaling molecules that carry biological information, phosphorylated active, and non-phosphorylated inactive forms. This study aims to evaluate the signal transduction step in cascades from the viewpoint of changes in mixing entropy. An increase in active forms may induce biological signal transduction through a mixing entropy change, which induces a chemical potential current in the signaling cascade. We applied the fluctuation theorem to calculate the chemical potential current and found that the average entropy production current is independent of the step in the whole cascade. As a result, the entropy current carrying signal transduction is defined by the entropy current mobility.

摘要

基于信息热力学对细胞信号级联的分析近来有了长足发展。信号级联可被视为一个二进制编码系统,由携带生物信息的两种信号分子组成,即磷酸化的活性形式和非磷酸化的非活性形式。本研究旨在从混合熵变化的角度评估级联中的信号转导步骤。活性形式的增加可能通过混合熵变化诱导生物信号转导,这会在信号级联中诱导化学势电流。我们应用涨落定理来计算化学势电流,发现平均熵产生电流与整个级联中的步骤无关。结果,携带信号转导的熵电流由熵电流迁移率定义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5eac/7512639/ecbe18ac2475/entropy-20-00145-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验