Suppr超能文献

叶绿体基因内抑制增强了突变型核酮糖-1,5-二磷酸羧化酶/加氧酶的低二氧化碳/氧气特异性。

Chloroplast intragenic suppression enhances the low CO2/O2 specificity of mutant ribulose-bisphosphate carboxylase/oxygenase.

作者信息

Chen Z X, Spreitzer R J

机构信息

Department of Biochemistry, University of Nebraska, Lincoln 68583-0718.

出版信息

J Biol Chem. 1989 Feb 25;264(6):3051-3.

PMID:2492528
Abstract

The competition between CO2 and O2 at the active site of ribulose-1,5-bisphosphate carboxylase/oxygenase limits net CO2 fixation in photosynthesis. In the green alga Chlamydomonas reinhardtii, a mutation in the chloroplast large-subunit gene reduces the CO2/O2 specificity of the enzyme by 37% and causes valine-331 to be replaced by alanine. Revertant selection identified an intragenic suppressor mutation that increases the CO2/O2 specificity of the mutant enzyme by 33%. This second-site mutation causes threonine-342 to be replaced by isoleucine. The complementing amino acid substitutions flank a catalytically essential lysyl residue at position 334. It thus appears that a number of amino acid residues can influence the CO2/O2 specificity of this bifunctional enzyme. The well defined chloroplast genetics of C. reinhardtii allows the interactions of these residues to be investigated.

摘要

在光合作用中,二氧化碳(CO₂)和氧气(O₂)在核酮糖-1,5-二磷酸羧化酶/加氧酶活性位点的竞争限制了净二氧化碳固定。在绿藻莱茵衣藻中,叶绿体大亚基基因的一个突变使该酶的CO₂/O₂特异性降低了37%,并导致缬氨酸-331被丙氨酸取代。回复突变体筛选鉴定出一个基因内抑制突变,该突变使突变酶的CO₂/O₂特异性提高了33%。这个第二位点突变导致苏氨酸-342被异亮氨酸取代。互补的氨基酸取代位于334位催化必需的赖氨酰残基两侧。因此,似乎许多氨基酸残基可以影响这种双功能酶的CO₂/O₂特异性。莱茵衣藻明确的叶绿体遗传学使得这些残基之间的相互作用得以研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验