Suppr超能文献

Plant-like substitutions in the large-subunit carboxy terminus of Chlamydomonas Rubisco increase CO2/O2 specificity.

作者信息

Satagopan Sriram, Spreitzer Robert J

机构信息

Department of Microbiology, Ohio State University, Columbus, OH 43210, USA.

出版信息

BMC Plant Biol. 2008 Jul 30;8:85. doi: 10.1186/1471-2229-8-85.

Abstract

BACKGROUND

Ribulose-1,5-bisphosphate is the rate-limiting enzyme in photosynthesis. The catalytic large subunit of the green-algal enzyme from Chlamydomonas reinhardtii is approxiamtely 90% identical to the flowering-plant sequences, although they confer diverse kinetic properties. To identify the regions that may account for species variation in kinetic properties, directed mutagenesis and chloroplast transformation were used to create four amino-acid substitutions in the carboxy terminus of the Chlamydomonas large subunit to mimic the sequence of higher-specificity plant enzymes.

RESULTS

The quadruple-mutant enzyme has a 10% increase in CO2/O2 specificity and a lower carboxylation catalytic efficiency. The mutations do not seem to influence the protein expression, structural stability or the function in vivo.

CONCLUSION

Owing to the decreased carboxylation catalytic efficiency, the quadruple-mutant is not a "better" enzyme. Nonetheless, because of its positive influence on specificity, the carboxy terminus, relatively far from the active site, may serve as a target for enzyme improvement via combinatorial approaches.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验