Jagini Kishore Kumar, Vaidyanath Harini, Bharadwaj Shrikant R
*MSc †MS ‡BS, PhD School of Medical Sciences, University of Hyderabad, Hyderabad, Andhra Pradesh, India (KKJ); StatPortals Inc., Chennai, Tamil Nadu, India (HV); Prof. Brien Holden Centre for Eye Research, Hyderabad Eye Research Foundation, L V Prasad Eye Institute, Hyderabad, Andhra Pradesh, India (SKB); and Bausch & Lomb School of Optometry, L V Prasad Eye Institute, Hyderabad, Andhra Pradesh, India (SKB).
Optom Vis Sci. 2014 Jul;91(7):778-85. doi: 10.1097/OPX.0000000000000305.
Gaze position is calibrated in first Purkinje image-based eye trackers using the population-average Hirschberg ratio (HR) that is prone to inaccuracies or using the individual's HR that is cumbersome to obtain empirically. This study investigated (1) the agreement between HR calculated theoretically from the individual's corneal curvature and anterior chamber (AC) depth and those obtained empirically and (2) the contribution of corneal curvature and AC depth in the intersubject variance of the two HRs.
Twenty-four subjects (mean ± SD age, 23.6 ± 3.5 years) fixated monocularly on a light-emitting diode array spanning ±24 degrees of horizontal or vertical gaze angle, in 4-degree steps, at 95 cm viewing distance. Empirical HR was determined using a custom-designed infrared eye tracker as the magnitude of separation between Purkinje image position and entrance pupil center per unit change in angular eccentricity. Theoretical HR was calculated from the subject's corneal curvature and AC depth using the model of Brodie (1987).
Empirical and theoretical HRs for horizontal and vertical gaze directions were well correlated (r ≥ 0.83) and not significantly different from each other (p ≥ 0.23; mean difference [±95% limits of agreement], -0.35 [0.85 to -1.55] degrees/mm for horizontal HR and -0.16 [1.01 to -1.33] degrees/mm for vertical HR). Corneal curvature and AC depth together accounted for greater than or equal to 80% and greater than or equal to 91% of intersubject variance in empirical and theoretical HR, respectively (p < 0.001). Hirschberg ratios changed at -2.3 to -2.8 degrees/mm per millimeter change in corneal curvature and at 2.0 to 2.4 degrees/mm per millimeter change in AC depth.
Theoretical HR calculated from the individual's corneal curvature and AC depth can be used in lieu of the empirical HR for gaze position calibration to within approximately 2 degrees/mm of accuracy. Gaze position accuracy significantly improves by using the theoretical HR, relative to the population-average HR. Corneal curvature and AC depth combined explain the majority of intersubject variability in HR.
在基于浦肯野图像的第一代眼动仪中,注视位置校准采用的是群体平均赫希伯格比率(HR),该方法容易出现不准确情况,或者采用个体的HR,但通过实验获取个体HR比较麻烦。本研究调查了(1)根据个体角膜曲率和前房(AC)深度理论计算得出的HR与实验获得的HR之间的一致性,以及(2)角膜曲率和AC深度在两种HR的个体间差异中的作用。
24名受试者(平均年龄±标准差,23.6±3.5岁)在95厘米的观察距离下,单眼注视一个发光二极管阵列,该阵列水平或垂直注视角度跨度为±24度,以4度为步长。使用定制设计的红外眼动仪确定实验HR,即浦肯野图像位置与入瞳中心之间的分离幅度随角离心率单位变化而变化。使用布罗迪(1987年)的模型根据受试者的角膜曲率和AC深度计算理论HR。
水平和垂直注视方向的实验HR与理论HR高度相关(r≥0.83),且彼此之间无显著差异(p≥0.23;平均差异[±95%一致性界限],水平HR为-0.35[0.85至-1.55]度/毫米,垂直HR为-0.16[1.01至-1.33]度/毫米)。角膜曲率和AC深度共同分别占实验HR和理论HR个体间差异的≥80%和≥91%(p<0.001)。角膜曲率每变化1毫米,赫希伯格比率变化-2.3至-2.8度/毫米,AC深度每变化1毫米,赫希伯格比率变化2.0至2.4度/毫米。
根据个体角膜曲率和AC深度计算得出的理论HR可用于代替实验HR进行注视位置校准,精度约为2度/毫米以内。相对于群体平均HR,使用理论HR可显著提高注视位置精度。角膜曲率和AC深度共同解释了HR个体间变异性的大部分。