Suppr超能文献

变形链球菌对N-乙酰葡糖胺和葡糖胺的摄取与代谢

Uptake and metabolism of N-acetylglucosamine and glucosamine by Streptococcus mutans.

作者信息

Moye Zachary D, Burne Robert A, Zeng Lin

机构信息

Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA.

Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA

出版信息

Appl Environ Microbiol. 2014 Aug;80(16):5053-67. doi: 10.1128/AEM.00820-14. Epub 2014 Jun 13.

Abstract

Glucosamine and N-acetylglucosamine are among the most abundant sugars on the planet, and their introduction into the oral cavity via the diet and host secretions, and through bacterial biosynthesis, provides oral biofilm bacteria with a source of carbon, nitrogen, and energy. In this study, we demonstrated that the dental caries pathogen Streptococcus mutans possesses an inducible system for the metabolism of N-acetylglucosamine and glucosamine. These amino sugars are transported by the phosphoenolpyruvate:sugar phosphotransferase system (PTS), with the glucose/mannose enzyme II permease encoded by manLMN playing a dominant role. Additionally, a previously uncharacterized gene product encoded downstream of the manLMN operon, ManO, was shown to influence the efficiency of uptake and growth on N-acetylglucosamine and, to a lesser extent, glucosamine. A transcriptional regulator, designated NagR, was able to bind the promoter regions in vitro, and repress the expression in vivo, of the nagA and nagB genes, encoding N-acetylglucosamine-6-phosphate deacetylase and glucosamine-6-phosphate deaminase, respectively. The binding activity of NagR could be inhibited by glucosamine-6-phosphate in vitro. Importantly, in contrast to the case with certain other Firmicutes, the gene for de novo synthesis of glucosamine-6-phosphate in S. mutans, glmS, was also shown to be regulated by NagR, and NagR could bind the glmS promoter region in vitro. Finally, metabolism of these amino sugars by S. mutans resulted in the production of significant quantities of ammonia, which can neutralize cytoplasmic pH and increase acid tolerance, thus contributing to enhanced persistence and pathogenic potential.

摘要

氨基葡萄糖和N - 乙酰氨基葡萄糖是地球上最丰富的糖类之一,它们通过饮食、宿主分泌物以及细菌生物合成进入口腔,为口腔生物膜细菌提供碳、氮和能量来源。在本研究中,我们证明了龋齿病原菌变形链球菌拥有一个用于代谢N - 乙酰氨基葡萄糖和氨基葡萄糖的诱导系统。这些氨基糖通过磷酸烯醇丙酮酸:糖磷酸转移酶系统(PTS)进行转运,由manLMN编码的葡萄糖/甘露糖酶II通透酶起主要作用。此外,在manLMN操纵子下游编码的一个先前未被表征的基因产物ManO,被证明会影响对N - 乙酰氨基葡萄糖的摄取效率以及在其上的生长,对氨基葡萄糖的影响程度较小。一种转录调节因子,命名为NagR,能够在体外结合启动子区域,并在体内抑制分别编码N - 乙酰氨基葡萄糖 - 6 - 磷酸脱乙酰酶和氨基葡萄糖 - 6 - 磷酸脱氨酶的nagA和nagB基因的表达。在体外,NagR的结合活性可被6 - 磷酸氨基葡萄糖抑制。重要的是,与某些其他厚壁菌不同,变形链球菌中6 - 磷酸氨基葡萄糖从头合成的基因glmS也被证明受NagR调控,并且NagR能够在体外结合glmS启动子区域。最后,变形链球菌对这些氨基糖的代谢导致产生大量氨,氨可以中和细胞质pH并提高酸耐受性,从而有助于增强其持久性和致病潜力。

相似文献

引用本文的文献

5
Carbon source-dependent capsule thickness regulation in .碳源依赖性荚膜厚度调节在 …… 中。
Front Cell Infect Microbiol. 2023 Nov 29;13:1279119. doi: 10.3389/fcimb.2023.1279119. eCollection 2023.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验