Suppr超能文献

人类特发性全身性癫痫中神经元KCC2协同转运蛋白功能的基因编码损伤。

Genetically encoded impairment of neuronal KCC2 cotransporter function in human idiopathic generalized epilepsy.

作者信息

Kahle Kristopher T, Merner Nancy D, Friedel Perrine, Silayeva Liliya, Liang Bo, Khanna Arjun, Shang Yuze, Lachance-Touchette Pamela, Bourassa Cynthia, Levert Annie, Dion Patrick A, Walcott Brian, Spiegelman Dan, Dionne-Laporte Alexandre, Hodgkinson Alan, Awadalla Philip, Nikbakht Hamid, Majewski Jacek, Cossette Patrick, Deeb Tarek Z, Moss Stephen J, Medina Igor, Rouleau Guy A

机构信息

Department of Cardiology, Manton Center for Orphan Disease Research, Howard Hughes Medical Institute Boston Children's Hospital, Boston, MA, USA Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA.

Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute McGill Université, Montréal, QC, Canada.

出版信息

EMBO Rep. 2014 Jul;15(7):766-74. doi: 10.15252/embr.201438840. Epub 2014 Jun 13.

Abstract

The KCC2 cotransporter establishes the low neuronal Cl(-) levels required for GABAA and glycine (Gly) receptor-mediated inhibition, and KCC2 deficiency in model organisms results in network hyperexcitability. However, no mutations in KCC2 have been documented in human disease. Here, we report two non-synonymous functional variants in human KCC2, R952H and R1049C, exhibiting clear statistical association with idiopathic generalized epilepsy (IGE). These variants reside in conserved residues in the KCC2 cytoplasmic C-terminus, exhibit significantly impaired Cl(-)-extrusion capacities resulting in less hyperpolarized Gly equilibrium potentials (EG ly), and impair KCC2 stimulatory phosphorylation at serine 940, a key regulatory site. These data describe a novel KCC2 variant significantly associated with a human disease and suggest genetically encoded impairment of KCC2 functional regulation may be a risk factor for the development of human IGE.

摘要

钾氯共转运体2(KCC2)建立了γ-氨基丁酸A(GABAA)和甘氨酸(Gly)受体介导的抑制作用所需的低神经元氯离子水平,并且在模式生物中KCC2缺乏会导致网络兴奋性过高。然而,在人类疾病中尚未记录到KCC2的突变。在此,我们报告了人类KCC2中的两个非同义功能性变体,即R952H和R1049C,它们与特发性全身性癫痫(IGE)表现出明显的统计学关联。这些变体位于KCC2细胞质C末端的保守残基中,表现出显著受损的氯离子外排能力,导致甘氨酸平衡电位(EGly)的超极化程度降低,并损害了KCC2在关键调节位点丝氨酸940处的刺激性磷酸化。这些数据描述了一种与人类疾病显著相关的新型KCC2变体,并表明KCC2功能调节的遗传编码损伤可能是人类IGE发生发展的一个危险因素。

相似文献

5
Seizing Control of KCC2: A New Therapeutic Target for Epilepsy.控制 KCC2:癫痫治疗的新靶点。
Trends Neurosci. 2017 Sep;40(9):555-571. doi: 10.1016/j.tins.2017.06.008. Epub 2017 Aug 10.

引用本文的文献

4
Development of KCC2 therapeutics to treat neurological disorders.开发用于治疗神经系统疾病的KCC2疗法。
Front Mol Neurosci. 2024 Dec 10;17:1503070. doi: 10.3389/fnmol.2024.1503070. eCollection 2024.
6
The biogenesis of potassium transporters: implications of disease-associated mutations.钾离子转运体的生物发生:疾病相关突变的影响
Crit Rev Biochem Mol Biol. 2024 Jun-Aug;59(3-4):154-198. doi: 10.1080/10409238.2024.2369986. Epub 2024 Jul 1.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验