Buchin Anatoly, Chizhov Anton, Huberfeld Gilles, Miles Richard, Gutkin Boris S
École normale supérieure, Paris Sciences et Lettres University, Laboratoire de Neurosciences Cognitives, Institute national de la santé et de la recherche médicale U960, Group for Neural Theory, 75005 Paris, France,
Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russia.
J Neurosci. 2016 Nov 16;36(46):11619-11633. doi: 10.1523/JNEUROSCI.4228-15.2016.
Pharmacoresistant epilepsy is a chronic neurological condition in which a basal brain hyperexcitability results in paroxysmal hypersynchronous neuronal discharges. Human temporal lobe epilepsy has been associated with dysfunction or loss of the potassium-chloride cotransporter KCC2 in a subset of pyramidal cells in the subiculum, a key structure generating epileptic activities. KCC2 regulates intraneuronal chloride and extracellular potassium levels by extruding both ions. Absence of effective KCC2 may alter the dynamics of chloride and potassium levels during repeated activation of GABAergic synapses due to interneuron activity. In turn, such GABAergic stress may itself affect Cl regulation. Such changes in ionic homeostasis may switch GABAergic signaling from inhibitory to excitatory in affected pyramidal cells and also increase neuronal excitability. Possibly these changes contribute to periodic bursting in pyramidal cells, an essential component in the onset of ictal epileptic events. We tested this hypothesis with a computational model of a subicular network with realistic connectivity. The pyramidal cell model explicitly incorporated the cotransporter KCC2 and its effects on the internal/external chloride and potassium levels. Our network model suggested the loss of KCC2 in a critical number of pyramidal cells increased external potassium and intracellular chloride concentrations leading to seizure-like field potential oscillations. These oscillations included transient discharges leading to ictal-like field events with frequency spectra as in vitro Restoration of KCC2 function suppressed seizure activity and thus may present a useful therapeutic option. These simulations therefore suggest that reduced KCC2 cotransporter activity alone may underlie the generation of ictal discharges.
Ion regulation in the brain is a major determinant of neural excitability. Intracellular chloride in neurons, a partial determinant of the resting potential and the inhibitory reversal potentials, is regulated together with extracellular potassium via kation chloride cotransporters. During temporal lobe epilepsy, the homeostatic regulation of intracellular chloride is impaired in pyramidal cells, yet how this dysregulation may lead to seizures has not been explored. Using a realistic neural network model describing ion mechanisms, we show that chloride homeostasis pathology provokes seizure activity analogous to recordings from epileptogenic brain tissue. We show that there is a critical percentage of pathological cells required for seizure initiation. Our model predicts that restoration of the chloride homeostasis in pyramidal cells could be a viable antiepileptic strategy.
药物抵抗性癫痫是一种慢性神经疾病,其中脑基底的过度兴奋会导致阵发性超同步神经元放电。人类颞叶癫痫与海马下托中一部分锥体细胞的氯化钾协同转运蛋白KCC2功能障碍或缺失有关,海马下托是产生癫痫活动的关键结构。KCC2通过排出这两种离子来调节神经元内的氯化物和细胞外的钾水平。由于中间神经元的活动,在GABA能突触反复激活期间,有效的KCC2缺失可能会改变氯化物和钾水平的动态变化。反过来,这种GABA能应激本身可能会影响氯离子的调节。离子稳态的这种变化可能会使受影响的锥体细胞中的GABA能信号从抑制性转变为兴奋性,并且还会增加神经元的兴奋性。这些变化可能促成了锥体细胞中的周期性爆发,这是发作性癫痫事件发作的一个重要组成部分。我们用一个具有真实连接性的海马下托网络计算模型来检验这一假设。锥体细胞模型明确纳入了协同转运蛋白KCC2及其对细胞内/外氯化物和钾水平的影响。我们的网络模型表明,关键数量的锥体细胞中KCC2的缺失会增加细胞外钾和细胞内氯化物浓度,导致类似癫痫发作的场电位振荡。这些振荡包括短暂放电,导致出现类似发作期的场事件,其频谱与体外情况相同。恢复KCC2功能可抑制癫痫发作活动,因此可能是一种有用的治疗选择。因此,这些模拟结果表明,单独降低KCC2协同转运蛋白活性可能是发作期放电产生的基础。
大脑中的离子调节是神经兴奋性的主要决定因素。神经元内的细胞内氯化物是静息电位和抑制性反转电位的部分决定因素,它通过阳离子-氯化物协同转运蛋白与细胞外钾一起受到调节。在颞叶癫痫期间,锥体细胞中细胞内氯化物的稳态调节受损,但这种失调如何导致癫痫发作尚未得到探讨。使用一个描述离子机制的真实神经网络模型,我们表明氯化物稳态病理会引发类似于致痫脑组织记录的癫痫发作活动。我们表明癫痫发作起始需要一定比例的病理细胞。我们的模型预测,恢复锥体细胞中的氯化物稳态可能是一种可行的抗癫痫策略。