Suppr超能文献

扩散磁共振成像在放射治疗中的临床应用

Clinical applications for diffusion magnetic resonance imaging in radiotherapy.

作者信息

Tsien Christina, Cao Yue, Chenevert Thomas

机构信息

Department of Radiation Oncology, University of Michigan Hospital and Health Systems, Ann Arbor, MI.

Department of Radiation Oncology, University of Michigan Hospital and Health Systems, Ann Arbor, MI.

出版信息

Semin Radiat Oncol. 2014 Jul;24(3):218-26. doi: 10.1016/j.semradonc.2014.02.004.

Abstract

In this article, we review the clinical applications of diffusion magnetic resonance imaging (MRI) in the radiotherapy treatment of several key clinical sites, including those of the central nervous system, the head and neck, the prostate, and the cervix. Diffusion-weighted MRI (DWI) is an imaging technique that is rapidly gaining widespread acceptance owing to its ease and wide availability. DWI measures the mobility of water within tissue at the cellular level without the need of any exogenous contrast agent. For radiotherapy treatment planning, DWI improves upon conventional imaging techniques, by better characterization of tumor tissue properties required for tumor grading, diagnosis, and target volume delineation. Because DWI is also a sensitive marker for alterations in tumor cellularity, it has potential clinical applications in the early assessment of treatment response following radiation therapy.

摘要

在本文中,我们回顾了扩散磁共振成像(MRI)在几个关键临床部位放射治疗中的临床应用,包括中枢神经系统、头颈部、前列腺和子宫颈等部位。扩散加权MRI(DWI)是一种成像技术,因其操作简便且广泛可用而迅速得到广泛认可。DWI在无需任何外源性造影剂的情况下,在细胞水平测量组织内水的流动性。对于放射治疗计划,DWI通过更好地表征肿瘤分级、诊断和靶区勾画所需的肿瘤组织特性,对传统成像技术进行了改进。由于DWI也是肿瘤细胞密度改变的敏感标志物,它在放射治疗后治疗反应的早期评估中具有潜在的临床应用价值。

相似文献

1
Clinical applications for diffusion magnetic resonance imaging in radiotherapy.
Semin Radiat Oncol. 2014 Jul;24(3):218-26. doi: 10.1016/j.semradonc.2014.02.004.
2
Magnetic resonance-guided adaptive radiotherapy: a solution to the future.
Semin Radiat Oncol. 2014 Jul;24(3):227-32. doi: 10.1016/j.semradonc.2014.02.013.
3
Rectal tumour volume (GTV) delineation using T2-weighted and diffusion-weighted MRI: Implications for radiotherapy planning.
Eur J Radiol. 2014 May;83(5):768-72. doi: 10.1016/j.ejrad.2014.02.007. Epub 2014 Feb 25.
4
Evaluating diffusion-weighted magnetic resonance imaging for target volume delineation in head and neck radiotherapy.
J Med Imaging Radiat Oncol. 2019 Jun;63(3):399-407. doi: 10.1111/1754-9485.12866. Epub 2019 Feb 28.
5
Diffusion-weighted MRI in image-guided adaptive brachytherapy: Tumor delineation feasibility study and comparison with GEC-ESTRO guidelines.
Brachytherapy. 2017 Sep-Oct;16(5):956-963. doi: 10.1016/j.brachy.2017.05.010. Epub 2017 Jun 30.
7
Re: MR imaging of prostate cancer in radiation oncology: what radiologists need to know.
J Urol. 2014 Aug;192(2):423-4. doi: 10.1016/j.juro.2014.05.021. Epub 2014 May 10.
8
Magnetic Resonance Imaging for Target Delineation and Daily Treatment Modification.
Semin Radiat Oncol. 2018 Jun;28(3):178-184. doi: 10.1016/j.semradonc.2018.02.002.
9
MR imaging of prostate cancer in radiation oncology: what radiologists need to know.
Radiographics. 2013 May;33(3):741-61. doi: 10.1148/rg.333125041.
10
4D perfusion CT of prostate cancer for image-guided radiotherapy planning: A proof of concept study.
PLoS One. 2019 Dec 19;14(12):e0225673. doi: 10.1371/journal.pone.0225673. eCollection 2019.

引用本文的文献

1
Use of Radiomics in Characterizing Tumor Hypoxia.
Int J Mol Sci. 2025 Jul 11;26(14):6679. doi: 10.3390/ijms26146679.
4
Tumor hypoxia unveiled: insights into microenvironment, detection tools and emerging therapies.
Clin Exp Med. 2024 Oct 3;24(1):235. doi: 10.1007/s10238-024-01501-1.
7
Validation of daily 0.35 T diffusion-weighted MRI for MRI-guided glioblastoma radiotherapy.
Med Phys. 2024 Aug;51(8):5386-5398. doi: 10.1002/mp.17067. Epub 2024 Apr 8.
9
Multi-parametric MRI for radiotherapy simulation.
Med Phys. 2023 Aug;50(8):5273-5293. doi: 10.1002/mp.16256. Epub 2023 Feb 9.
10
Improving liver tumor image contrast and synthesizing novel tissue contrasts by adaptive multiparametric MRI fusion.
Precis Radiat Oncol. 2022 Sep;6(3):190-198. doi: 10.1002/pro6.1167. Epub 2022 Jul 16.

本文引用的文献

1
Diffusion abnormality index: a new imaging biomarker for early assessment of tumor response to therapy.
Pract Radiat Oncol. 2013 Apr-Jun;3(2 Suppl 1):S5. doi: 10.1016/j.prro.2013.01.018. Epub 2013 Mar 25.
3
Does 11C-choline PET-CT contribute to multiparametric MRI for prostate cancer localisation?
Strahlenther Onkol. 2013 Sep;189(9):789-95. doi: 10.1007/s00066-013-0359-5.
6
Changes in apparent diffusion coefficient and T2 relaxation during radiotherapy for prostate cancer.
J Magn Reson Imaging. 2013 Apr;37(4):909-16. doi: 10.1002/jmri.23885. Epub 2012 Oct 23.
7
Tumor volume and subvolume concordance between FDG-PET/CT and diffusion-weighted MRI for squamous cell carcinoma of the cervix.
J Magn Reson Imaging. 2013 Feb;37(2):431-4. doi: 10.1002/jmri.23830. Epub 2012 Sep 28.
9
Evaluation of the prostate bed for local recurrence after radical prostatectomy using endorectal magnetic resonance imaging.
Int J Radiat Oncol Biol Phys. 2013 Feb 1;85(2):378-84. doi: 10.1016/j.ijrobp.2012.05.015. Epub 2012 Jun 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验