Yilmazel Bahar, Hu Yanhui, Sigoillot Frederic, Smith Jennifer A, Shamu Caroline E, Perrimon Norbert, Mohr Stephanie E
Drosophila RNAi Screening Center, Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
BMC Bioinformatics. 2014 Jun 17;15:192. doi: 10.1186/1471-2105-15-192.
RNA interference (RNAi) is an effective and important tool used to study gene function. For large-scale screens, RNAi is used to systematically down-regulate genes of interest and analyze their roles in a biological process. However, RNAi is associated with off-target effects (OTEs), including microRNA (miRNA)-like OTEs. The contribution of reagent-specific OTEs to RNAi screen data sets can be significant. In addition, the post-screen validation process is time and labor intensive. Thus, the availability of robust approaches to identify candidate off-targeted transcripts would be beneficial.
Significant efforts have been made to eliminate false positive results attributable to sequence-specific OTEs associated with RNAi. These approaches have included improved algorithms for RNAi reagent design, incorporation of chemical modifications into siRNAs, and the use of various bioinformatics strategies to identify possible OTEs in screen results. Genome-wide Enrichment of Seed Sequence matches (GESS) was developed to identify potential off-targeted transcripts in large-scale screen data by seed-region analysis. Here, we introduce a user-friendly web application that provides researchers a relatively quick and easy way to perform GESS analysis on data from human or mouse cell-based screens using short interfering RNAs (siRNAs) or short hairpin RNAs (shRNAs), as well as for Drosophila screens using shRNAs. Online GESS relies on up-to-date transcript sequence annotations for human and mouse genes extracted from NCBI Reference Sequence (RefSeq) and Drosophila genes from FlyBase. The tool also accommodates analysis with user-provided reference sequence files.
Online GESS provides a straightforward user interface for genome-wide seed region analysis for human, mouse and Drosophila RNAi screen data. With the tool, users can either use a built-in database or provide a database of transcripts for analysis. This makes it possible to analyze RNAi data from any organism for which the user can provide transcript sequences.
RNA干扰(RNAi)是用于研究基因功能的一种有效且重要的工具。对于大规模筛选,RNAi用于系统性地下调感兴趣的基因,并分析它们在生物学过程中的作用。然而,RNAi与脱靶效应(OTE)相关,包括类似微小RNA(miRNA)的OTE。试剂特异性OTE对RNAi筛选数据集的影响可能很大。此外,筛选后的验证过程既耗时又费力。因此,拥有可靠的方法来识别候选脱靶转录本将大有裨益。
人们已做出重大努力来消除与RNAi相关的序列特异性OTE导致的假阳性结果。这些方法包括改进RNAi试剂设计算法、将化学修饰引入小干扰RNA(siRNA)以及使用各种生物信息学策略来识别筛选结果中可能的OTE。全基因组种子序列匹配富集分析(GESS)通过种子区域分析来识别大规模筛选数据中的潜在脱靶转录本。在此,我们推出了一个用户友好的网络应用程序,为研究人员提供一种相对快速简便的方法,可对来自基于人或小鼠细胞的筛选数据(使用小干扰RNA(siRNA)或短发夹RNA(shRNA))以及基于果蝇的筛选数据(使用shRNA)进行GESS分析。在线GESS依赖于从NCBI参考序列(RefSeq)提取的人和小鼠基因以及从FlyBase提取的果蝇基因的最新转录本序列注释。该工具还可使用用户提供的参考序列文件进行分析。
在线GESS为人类、小鼠和果蝇RNAi筛选数据的全基因组种子区域分析提供了一个直观的用户界面。使用该工具,用户既可以使用内置数据库,也可以提供转录本数据库进行分析。这使得分析用户能够提供转录本序列的任何生物体的RNAi数据成为可能。