Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Ushinomiya-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan.
Nissan Chemical Industries, Ltd., 3-7-1 Kanda Nishiki-cho, Chiyoda-ku, Tokyo 101-1154, Japan.
Stem Cell Reports. 2014 Apr 24;2(5):734-45. doi: 10.1016/j.stemcr.2014.03.012. eCollection 2014 May 6.
Utilizing human pluripotent stem cells (hPSCs) in cell-based therapy and drug discovery requires large-scale cell production. However, scaling up conventional adherent cultures presents challenges of maintaining a uniform high quality at low cost. In this regard, suspension cultures are a viable alternative, because they are scalable and do not require adhesion surfaces. 3D culture systems such as bioreactors can be exploited for large-scale production. However, the limitations of current suspension culture methods include spontaneous fusion between cell aggregates and suboptimal passaging methods by dissociation and reaggregation. 3D culture systems that dynamically stir carrier beads or cell aggregates should be refined to reduce shearing forces that damage hPSCs. Here, we report a simple 3D sphere culture system that incorporates mechanical passaging and functional polymers. This setup resolves major problems associated with suspension culture methods and dynamic stirring systems and may be optimal for applications involving large-scale hPSC production.
利用人多能干细胞(hPSCs)进行基于细胞的治疗和药物发现需要大规模的细胞生产。然而,扩大传统的贴壁培养存在着维持低成本、高质量的均匀性的挑战。在这方面,悬浮培养是一种可行的替代方法,因为它是可扩展的,并且不需要粘附表面。生物反应器等 3D 培养系统可用于大规模生产。然而,目前悬浮培养方法的局限性包括细胞聚集体之间的自发融合以及通过解离和再聚集进行的次优传代方法。应该改进动态搅拌载体珠或细胞聚集体的 3D 培养系统,以减少破坏 hPSCs 的剪切力。在这里,我们报告了一种简单的 3D 球培养系统,该系统结合了机械传代和功能聚合物。该装置解决了悬浮培养方法和动态搅拌系统相关的主要问题,对于涉及大规模 hPSC 生产的应用可能是最佳的。